
Preparation

● In a web browser, go to: 
https://ibm.biz/kubecon-secure-deployment

● This shortened link goes to a Katacoda instance, where 
you’ll find the lab instructions and be given access to a 
cluster that you can use to complete the steps.

● This link will continue to work after the session, but you’ll 
need to start again once your session expires!

https://ibm.biz/kubecon-secure-deployment


DevSecOps Kubernetes
Pipeline Workshop
From @ibm and @controlplaneio

https://twitter.com/ibm
https://twitter.com/controlplaneio


Michael Hough
Developer, IBM Cloud Container Registry

Maintainer, Portieris

@molepigeon



Sam Irvine
Infrastructure Engineer



Preparation

● In a web browser, go to: 
https://ibm.biz/kubecon-secure-deployment

● This shortened link goes to a Katacoda instance, where 
you’ll find the lab instructions and be given access to a 
cluster that you can use to complete the steps.

● This link will continue to work after the session, but you’ll 
need to start again once your session expires!

https://ibm.biz/kubecon-secure-deployment


Secure Pipelines
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Secure Cloud-Native Delivery
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https://www.slideshare.net/FranklinMosley/devsecops-a-new-hope-for-security-in-cicd 

https://www.slideshare.net/FranklinMosley/devsecops-a-new-hope-for-security-in-cicd
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Build Flow

● Build image (base image from Docker Hub)
● Assert absence of vulnerabilities in image (Harbor)
● Cryptographically sign image for later verification
● Push image to container registry
● Attempt to deploy image to cluster
● Verify image has been signed with an admission controller
● Reject images that have not followed due process and 

organisational policy
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Harbor

● Container image registry (a “self-hosted Docker Hub”)
● Joined CNCF in July 2018
● Capable of running inside a cluster for inception-esque 

self-referential image pulls



Vulnerable Images





What Can Image Scanning Detect?

● This depends upon the depth 
of the tool

● Some will just scan installed 
operating system package 
manager versions

● Others will check filesystem 
permissions for all entities, 
extra binaries, secrets, policies 
etc.



Image vulnerability scanning approaches
● Components to scan: 

package-level vs. code-level
○ OS packages
○ App library packages
○ JARs, WARs, TARs, etc.
○ Malware
○ Misconfigurations, e.g., 

secrets
● Scan type

○ Layer-by-layer
○ UnionFS top layer 

only
https://sysdig.com/blog/container-security-docker-image-scanning/ 

https://sysdig.com/blog/container-security-docker-image-scanning/


Clair vs. MicroScanner vs. Anchore
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Packages, files, 
software artifacts
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Daemon Registry

Digest for ubuntu:latest, 
please!

Content for ubuntu@12345, 
please!

12345

<stuff>



Registry

Daemon Notary

Digest for ubuntu:latest, 
please!

I trust Bob…

And that’s his digital 
signature!

Content for ubuntu@12345, 
please!

12345, and it’s signed by 
Alice, Bob and Charlie

<stuff>





Extensible Admission Controllers

http://blog.kubernetes.io/2018/01/extensible-admission-is-beta.html

http://blog.kubernetes.io/2018/01/extensible-admission-is-beta.html




API Server

NotaryPortieris



image: ibmcom/portieris:0.5.1



image: ibmcom/portieris@sha256:19b6e9df327….



kubesec.io - risk score for K8S YAML



kubesec.io - example insecure pod

{
  "score": -30,
  "scoring": {
    "critical": [{
      "selector": "containers[] .securityContext .privileged == true",
      "reason": "Privileged containers can allow almost completely unrestricted host access"
    }],
    "advise": [{
      "selector": "containers[] .securityContext .runAsNonRoot == true",
      "reason": "Force the running image to run as a non-root user to ensure least privilege"
    }, {
      "selector": "containers[] .securityContext .capabilities .drop",
      "reason": "Reducing kernel capabilities available to a container limits its attack surface",
      "href": "https://kubernetes.io/docs/tasks/configure-pod-container/security-context/"
    },
   ...



More Admission 
Control 



Minimum viable security

● We have
○ Verified the contents of an image are not insecure
○ Signed the image to confirm we have tested it
○ Prevented unsigned images from being deployed to production

● These are the building blocks of a secure pipeline
○ But only focus on the contents of the image and not its runtime 

configuration
● PodSecurityPolicy and NetworkPolicy should be use to limit the 

behaviour of the application at runtime
● Further admission controllers can be added to enhance security



Threat Model

● Attacks wholly or partially mitigated:
○ Container image and application supply chain with known CVEs 
○ Theft of users’ container registry credentials 
○ Some build server compromises

● Extant risk:
○ Compromised user or insider threat
○ Zero day vulnerabilities
○ ...the rest of the Kubernetes attack surface!



Try for yourself!

https://ibm.biz/kubecon-secure-deployment

https://ibm.biz/kubecon-secure-deployment


Summary



Vulnerable images

● Tooling can automatically identify vulnerabilities in your apps
● … and prevent you from shipping to production if they’re 

vulnerable
● CVEs are a likely way for an attacker to being their assault on 

your systems
● Never ship CVEs to production
● Stuff that’s in production today can be affected by a CVE 

tomorrow - make sure to stay on top of patching.



Know what you’re deploying

● Scanning for vulnerabilities is important - but only makes any 
sense if that same image is deployed to production

● Asserting that the image that runs in production contains 
what you think it does is another basic security precaution 
that is too-often overlooked

● This security measure can prevent the compromise of 
access to your container registry from compromising 
production


