
Preparation

● In a web browser, go to:
https://ibm.biz/kubecon-secure-deployment

● This shortened link goes to a Katacoda instance, where
you’ll find the lab instructions and be given access to a
cluster that you can use to complete the steps.

● This link will continue to work after the session, but you’ll
need to start again once your session expires!

https://ibm.biz/kubecon-secure-deployment

DevSecOps Kubernetes
Pipeline Workshop
From @ibm and @controlplaneio

https://twitter.com/ibm
https://twitter.com/controlplaneio

Michael Hough
Developer, IBM Cloud Container Registry

Maintainer, Portieris

@molepigeon

Sam Irvine
Infrastructure Engineer

Preparation

● In a web browser, go to:
https://ibm.biz/kubecon-secure-deployment

● This shortened link goes to a Katacoda instance, where
you’ll find the lab instructions and be given access to a
cluster that you can use to complete the steps.

● This link will continue to work after the session, but you’ll
need to start again once your session expires!

https://ibm.biz/kubecon-secure-deployment

Secure Pipelines

@sublimino

Dependencies

Build Test Deploy

Metadata

Kubernetes

Image
Scanner

- Code
- OS packages
- 3rd-party code libraries
- Docker images
- Provenance & veracity

attested
- Signing

Safe to build X?
Safe to use dependency Y?

Store build metadata
(incl. static analysis etc.

results) Scan built images
Store metadata

Record vuln’s found Store metadata
Record test results

Store metadata
Provenance & veracity

checks
Change control

automation checks
Deployment acceptance

policy
Gated deployments
All stored metadata

available
for policy decisions

Jenkins build
Static analysis

Triggered by Git
RBAC

Ephemeral dev & test envs
Continuous pen-test
IDS
Infra changes tested in CI
Network policy tested in CI
Threat-modelling driven
network policy lock-down
Service identity
Service-to-service network
policy

Secure Cloud-Native Delivery

Stages of the CDLC (Container Delivery Lifecycle)

Bu
ild

Te
st

Sc
an

A
na

ly
si

s

Q
A

CI/CD pipeline

VM

VM

VM
Pod
Microservice

Pod

Pod

Production environmentDeveloper

CodeBase
image Build Application

image Deploy

https://www.slideshare.net/FranklinMosley/devsecops-a-new-hope-for-security-in-cicd

https://www.slideshare.net/FranklinMosley/devsecops-a-new-hope-for-security-in-cicd

@sublimino

Open-source supply chain today

Build Application
image DeployCodeBase image

Pipeline
metadata:

Grafeas, in-toto

Vulnerability
scanning: Clair,
Micro Scanner,
Anchore Open
Source Engine

Admission
control: K8s

admission
controllers, Kritis,

Portieris

Updates: TUF,
Notary

Images: Docker
Distribution (Hub)

@sublimino

Open-source supply chain today

Build Application
image DeployCodeBase image

Pipeline
metadata:

Grafeas, in-toto

Vulnerability
scanning: Clair,
Micro Scanner,
Anchore Open
Source Engine

Admission
control: K8s

admission
controllers, Kritis,

Portieris

Updates: TUF,
Notary

Images: Docker
Distribution (Hub)

Build Flow

● Build image (base image from Docker Hub)
● Assert absence of vulnerabilities in image (Harbor)
● Cryptographically sign image for later verification
● Push image to container registry
● Attempt to deploy image to cluster
● Verify image has been signed with an admission controller
● Reject images that have not followed due process and

organisational policy

Harbor

Docker
Distribution

Container registry

Notary
Cryptographic
image signing

Clair
Image vulnerability

scanning

Harbor

● Container image registry (a “self-hosted Docker Hub”)
● Joined CNCF in July 2018
● Capable of running inside a cluster for inception-esque

self-referential image pulls

Vulnerable Images

What Can Image Scanning Detect?

● This depends upon the depth
of the tool

● Some will just scan installed
operating system package
manager versions

● Others will check filesystem
permissions for all entities,
extra binaries, secrets, policies
etc.

Image vulnerability scanning approaches
● Components to scan:

package-level vs. code-level
○ OS packages
○ App library packages
○ JARs, WARs, TARs, etc.
○ Malware
○ Misconfigurations, e.g.,

secrets
● Scan type

○ Layer-by-layer
○ UnionFS top layer

only
https://sysdig.com/blog/container-security-docker-image-scanning/

https://sysdig.com/blog/container-security-docker-image-scanning/

Clair vs. MicroScanner vs. Anchore

Scanning depth OS covered Maintainer

Packages CoreOS

Packages
Alpine, CentOS,
Debian, Oracle

Linux, RHEL, Ubuntu
Aqua Security

Packages, files,
software artifacts

Anchore

Daemon Registry

Digest for ubuntu:latest,
please!

Content for ubuntu@12345,
please!

12345

<stuff>

Registry

Daemon Notary

Digest for ubuntu:latest,
please!

I trust Bob…

And that’s his digital
signature!

Content for ubuntu@12345,
please!

12345, and it’s signed by
Alice, Bob and Charlie

<stuff>

Extensible Admission Controllers

http://blog.kubernetes.io/2018/01/extensible-admission-is-beta.html

http://blog.kubernetes.io/2018/01/extensible-admission-is-beta.html

API Server

NotaryPortieris

image: ibmcom/portieris:0.5.1

image: ibmcom/portieris@sha256:19b6e9df327….

kubesec.io - risk score for K8S YAML

kubesec.io - example insecure pod

{
 "score": -30,
 "scoring": {
 "critical": [{
 "selector": "containers[] .securityContext .privileged == true",
 "reason": "Privileged containers can allow almost completely unrestricted host access"
 }],
 "advise": [{
 "selector": "containers[] .securityContext .runAsNonRoot == true",
 "reason": "Force the running image to run as a non-root user to ensure least privilege"
 }, {
 "selector": "containers[] .securityContext .capabilities .drop",
 "reason": "Reducing kernel capabilities available to a container limits its attack surface",
 "href": "https://kubernetes.io/docs/tasks/configure-pod-container/security-context/"
 },
 ...

More Admission
Control

Minimum viable security

● We have
○ Verified the contents of an image are not insecure
○ Signed the image to confirm we have tested it
○ Prevented unsigned images from being deployed to production

● These are the building blocks of a secure pipeline
○ But only focus on the contents of the image and not its runtime

configuration
● PodSecurityPolicy and NetworkPolicy should be use to limit the

behaviour of the application at runtime
● Further admission controllers can be added to enhance security

Threat Model

● Attacks wholly or partially mitigated:
○ Container image and application supply chain with known CVEs
○ Theft of users’ container registry credentials
○ Some build server compromises

● Extant risk:
○ Compromised user or insider threat
○ Zero day vulnerabilities
○ ...the rest of the Kubernetes attack surface!

Try for yourself!

https://ibm.biz/kubecon-secure-deployment

https://ibm.biz/kubecon-secure-deployment

Summary

Vulnerable images

● Tooling can automatically identify vulnerabilities in your apps
● … and prevent you from shipping to production if they’re

vulnerable
● CVEs are a likely way for an attacker to being their assault on

your systems
● Never ship CVEs to production
● Stuff that’s in production today can be affected by a CVE

tomorrow - make sure to stay on top of patching.

Know what you’re deploying

● Scanning for vulnerabilities is important - but only makes any
sense if that same image is deployed to production

● Asserting that the image that runs in production contains
what you think it does is another basic security precaution
that is too-often overlooked

● This security measure can prevent the compromise of
access to your container registry from compromising
production

