
Streamlining Kubernetes
Application CI/CD with Bazel

March 2019

Gregg Donovan - Staff Software Engineer, Etsy
Christopher Love - Principal Architect for Project Helmsman, CNM
Consulting - https://chrislovecnm.com

Why?

Kubernetes is becoming the
standard for container
management. Using Bazel to build
and deploy.

How?

Use Bazel rules to build
containers and deploy them to
Kubernetes.

What?

Using Bazel to build and manage
Containers and Kubernetes

Goals for the session

01Containers
Why do we need them?

Google has been developing
and using containers to
manage applications for over
12 years.

Images by Connie
Zhou

© 2018 Google LLC. All rights reserved.

Image
A method of packaging an executable application and its
dependencies (runtime, system tools, system libraries,
configuration)

Runtime
Running the package as a set of resource-isolated
processes

Containers are about two capabilities

© 2018 Google LLC. All rights reserved.

Lightweight

Containers contain only what is
necessary, so the same host can run
multiple containers.

Portable

Containers package all the
dependencies into the image;
therefore they do not rely on host to
provide anything other than basic
compute resources.

Fast

Containers (which run as processes)
take less time to start up given that
the host is already running and has
the container image downloaded.

Container Buzz Words

© 2018 Google LLC. All rights reserved.

But it’s all so different!
● Deployment

● Management, monitoring

● Isolation (very complicated!)

● Rolling Updates

● Discovery

● Scaling, replication, sets

A fundamentally different way of managing
applications requires different tooling and abstractions

© 2018 Google LLC. All rights reserved.

Containers do not solve
everything

● Storage

● Load balancing

● Discovery

● Multiple Apps

● Security

● Failover

● QOS

02Kubernetes
What is all the buzz about?

● Manages container inside a cluster

● Inspired and informed by Google’s
experiences and the Borg

● Supports multiple cloud and bare-metal
environments

● Solves the problems listed on the previous
slide

Kubernetes Open Source Project

© 2018 Google LLC. All rights reserved.

Think of Kubernetes as the OS
for your compute fleet

Scheduling Monitoring

Scaling Self Healing

03Bazel
Using Bazel with your Containers

BIG CODE

© 2018 Google LLC. All rights reserved.

Bazel: A Modern Build and test System

Bazel.build

Fast, reproducible build and test

Cloud accelerated

Google OSS

© 2018 Google LLC. All rights reserved.

LoC

© 2018 Google LLC. All rights reserved.

LoC

© 2018 Google LLC. All rights reserved.

LoC

© 2018 Google LLC. All rights reserved.

LoC

© 2018 Google LLC. All rights reserved.

LoC

© 2018 Google LLC. All rights reserved.

LoC

2,000,000,000

BIG CODE →

BIG BUILD →

BIG TEST

© 2018 Google LLC. All rights reserved.

Building1

Unit Tests2

Dependency Management3

Gazelle4

© 2018 Google LLC. All rights reserved.

D.R.Y.
Only retest when necessary

© 2018 Google LLC. All rights reserved.

Fan out
Execute tests in parallel

© 2018 Google LLC. All rights reserved.

Bazel builds ~all the things

Android

C and C++

C#

D

Docker

Go

Groovy

Haskell

Kotlin

iOS

Java

JavaScript

Jsonnet

Objective C

Perl

PHP

Protobuf

Python

Ruby

Rust

Sass

Scala

Shell

Swift

TypeScript

© 2018 Google LLC. All rights reserved.

A set of rules for pulling
down base images,
augmenting them with
build artifacts and
assets

© 2018 Google LLC. All rights reserved.

Authentication1

Publish Containers2

Mananage Container Digests3

Manifest Templating4

Deploying Manifests5

Full Application CRUD6

Credits

Thanks to Eric Hole (@geojaz) for working on
the demo.

Thanks to Shravani Dharam (@sdharam) for
proofreading and formatting!

© 2018 Google LLC. All rights reserved.

Demo

© 2018 Google LLC. All rights reserved.

Demo

© 2018 Google LLC. All rights reserved.

Professional
Services:
Project
Helmsman

© 2018 Google LLC. All rights reserved.

Project Helmsman
Helmsman is a project to build and release
open-source examples of how to run common
patterns in Google Kubernetes Engine along with
workshops for Google’s partners to deliver, to teach
their customers how to move to a containerized
world.

Workshops and
matching
open-source PoCs to
guide customers and
partners through
using Kubernetes
Engine in production

Shortlink to the code: https://goo.gl/uD5sAM

33

Bazel and Kubernetes at Etsy

The global marketplace for unique
and creative goods

etsy.com/shop/SimplyCreatedForYou6

● 39.4m active buyers

● 2.1m sellers

● 60m+ listings

● $3.9b 2018 GMS

● 874 employees

About Etsy

It's a fun problem

etsy.com/shop/JessicaThurstonArt

Other offices in:

● San Francisco, CA

● Hudson, NY

● Berlin, Germany

● Dublin, Ireland

● London, UK

● New Delhi, India

● Paris, France

● Toronto, Canada

Headquartered in Brooklyn

38

- Why and how Etsy adopted Bazel, rules_k8s,and
rules_docker

- How they work to yield fast, correct deployments

- Bazel and Kubernetes learnings from our GKE
migration

etsy.com/shop/RossiVArt

15+ services

One CI/CD pipeline

Bazel

rules_k8s

rules_docker

Python for YAML

Per k8s context config

Search Monorepo

40

Kubernetes:
Hashing &
Caching

apiVersion: apps/v1
kind: Deployment
metadata:
 name: redis-master
 labels:
 app: redis
spec:
 selector:
 matchLabels:
 app: redis
 role: master
 tier: backend
 replicas: 1
 template:
 metadata:
 labels:
 app: redis
 role: master
 tier: backend
 spec:
 containers:
 - name: master
 image: k8s.gcr.io/redis:e2e
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 6379

SHA256

41

rules_docker > Dockerfile

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
search/apps/mmx mmx_docker e2a1d55be23d 48 years ago 932 MB
search_data_docker intermediate cbefdae46002 48 years ago 460.4 MB
search/apps/spell_correction spell_correction_docker 91653e8b5207 48 years ago 448.8 MB
search/apps/etsy-search1 etsy-search1_docker 167736f9b424 48 years ago 569.1 MB
search/apps/slv2 slv2_docker 3aa5a41625c5 48 years ago 935.3 MB
search/apps/elastic2/kubernetes elastic2_gke_docker eb56b8285cad 48 years ago 125.9 MB
...

42

rules_k8s

load("@io_bazel_rules_k8s//k8s:object.bzl", "k8s_object")

k8s_object(

 name = "dev",

 kind = "deployment",

 # A template of a Kubernetes Deployment object yaml.

 template = ":deployment.yaml",

 # An optional collection of docker_build images to publish

when this target is bazel run. The digest of the published image

is substituted as a part of the resolution process.

 images = {

 "gcr.io/rules_k8s/server:dev": //server:image"

 },

)

Motivation: Monorepo

43

Deploy just the right
amount, every time

44

Let Bazel
work it out
with the
Container
Registry and
K8s

46

47

What is a
Docker
container?

$ docker inspect bb1efd443479
[
 {
 "Id": "sha256:bb1efd443479d95d959c990f268a6bb3d06bfafb82ce2200c45d0a24262e0c1d",
 "RepoTags": ["bazel/grafana:grafana_docker"],
 "Created": "1970-01-01T00:00:00Z",
 "Author": "Bazel",
 "Config": {
 "User": "grafana",
 "ExposedPorts": { "3000/tcp": {} },
 "Env": [

"PATH=/usr/share/grafana/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "GF_PATHS_CONFIG=/etc/grafana/grafana.ini",
],
 "Image": "sha256:ea9f0ca0dc5d538ab046a8618af1aaf0d3df05e89dc3a0420fabd9b46c4a0261",
 "WorkingDir": "/",
 "Entrypoint": ["/run.sh"],
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Size": 238231783,
 "RootFS": {
 "Type": "layers",
 "Layers": [
 "sha256:d626a8ad97a1f9c1f2c4db3814751ada64f60aed927764a3f994fcd88363b659",
 "sha256:fe145ea19a267f67c106d3bf3df09a14d0d02c0f93e2c14df2f32f28562b954c",
 "sha256:d580759d14dac7f636711d0901258b1b22ae4c1bb046e06d1801c031192e52b5",
 "sha256:7d59735eaa9f4b2c5da8dc576540d1903a9db46fcbf867453cf95b6466f2ceab",
 "sha256:fd0c81ee3761fc31e63a56793e9baaa3744f1bc26077f63480bde878cc819b53",
 "sha256:f874fe8e2453b568a50fc6072edc1dd75c6ab568dbd658fe9978588411abad20",
 "sha256:9dd3209f58e05896460aac252bb068e1a59d107eabf7ffb7faf25f2cebae70cd"
]
 }
 }
]

rules_docker:
Docker without docker or a
Dockerfile

48

49

Check for the existence of an image manifest. Check for the existence of a layer.

Container Registry v2 API

HEAD /v2/<image-name>/manifests/<sha256> HEAD /v2/<name>/blobs/<digest>

50

Kubernetes
pod-template-hash

apiVersion: apps/v1
kind: Deployment
metadata:
 name: grafana
 labels:
 app: grafana
spec:
 selector:
 matchLabels:
 app: grafana
 replicas: 1
 template:
 metadata:
 labels:
 app: grafana
 spec:
 containers:
 - name: grafana
 image:
gcr.io/etsy-gcr/grafana@sha256:99b8c7ac7fdb1e04ccbd5609
0f91f3eeb0ed21a77abb5bb2a25532fca7026dbb
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 3000

SHA256

51

github.com/GoogleContainerTools/distroless

Tip #1:
Use "Distroless"
Containers

● Smaller size
● No package manager
● Fewer CVEs

load("@io_bazel_rules_docker//java:image.bzl",

"java_image")

java_image(

 name = "hello",

 srcs = ["HelloJava.java"],

 base = "//java:java8",

 main_class = "examples.HelloJava",

)

Tip #2:
Use SHA256 image
references

Tip #3:
Build YAML with the K8s
Client APIs

53

54

Tip #4:
Pulumi

pulumi.io

// Canary ring. Replicate instrumented Pod 3 times.
const canary = new k8s.apps.v1beta1.Deployment(
 "canary-example-app",
 { spec: { replicas: 1, template: instrumentedPod } },
 { dependsOn: p8sDeployment }
);

// Staging ring. Replicate instrumented Pod 10 times.
const staging = new k8s.apps.v1beta1.Deployment("staging-example-app", {
 metadata: {
 annotations: {
// Check P90 latency is < 20,000 microseconds. Returns a `Promise<string>`
// with the P90 response time. It must resolve correctly before this
// deployment rolls out.
// In general any `Promise<T>` could go here.
 "example.com/p90ResponseTime": util.checkHttpLatency(canary,
containerName, {
 durationSeconds: 30,
 quantile: 0.9,
 thresholdMicroseconds: 20000,
 prometheusEndpoint: `localhost:${localPort}`,
 })
 }
 },
 spec: { replicas: 1, template: instrumentedPod }
});

55

Tip #5:
Tilt for dev
workflow

tilt.dev

def bazel_build(image, target):
 custom_build(
 image,
 'bazel run ' + target,
 [],
 tag="image",
)

k8s_yaml(bazel_k8s(":snack-server"))
bazel_build('bazel/snack', '//snack:image')

56

Tip #6:
Use CRDs to
model cloud
resources

apiVersion: redis.cnrm.cloud.google.com/v1alpha2

kind: RedisInstance

metadata:

 name: redisinstance-sample

spec:

 displayName: Sample Redis Instance

 region: us-central1

 tier: BASIC

 memorySizeGb: 16

apiVersion: service-operator.aws/v1alpha1

kind: ElastiCache

metadata:

 name: elasticache13

spec:

 cacheSubnetGroupName: "loadtest-cluster-k8s"

 vpcSecurityGroupIds: "sg-0581b94aa3c0db58c, sg-02b6d0034e8c2fa1b"

 autoMinorVersionUpgrade: true

 engine: redis

 engineVersion: 5.0.0

 numCacheNodes: 1

 port: 6379

 cacheNodeType: "cache.m4.large"

57

Picks up all *.json files in this directory:

json_dashboards(

 name = "json_dashboards",

 srcs = glob(["*.json"]),

)

Picks up all *.py files in this directory:

py_dashboards(

 name = "py_dashboards",

 srcs = glob(["*.py"]),

)

Built dashboards can be combined together in a filegroup for easy

access:

filegroup(

 name = "dashboards",

 srcs = [":json_dashboards", ":py_dashboards",],

)

Build the dashboards into a docker image:

grafana_image(

 name = "grafana",

 dashboards = [":dashboards"],

 datasources = [":datasources.yaml"],

)

github.com/etsy/rules_grafana

Contact Us

@chrislovecnm
clove@google.com

@greggdonovan
gregg@etsy.com

etsy.com/shop/IrinaRedineArt

59

Thank you!

etsy.com/shop/CharlenePrecious

