
Smarter Kubernetes Access Control:
A Simpler Approach to Auth
Rob Scott | ReactiveOps | @robertjscott

•Challenges of authorization

•Quick recap of RBAC basics

•Open Source tools can help understand RBAC

• Best practices and open source can be combined
for better RBAC Management

Outline

Authorization is

Challenging

Authorization systems often feel
either too simple or too complex

Authorization is only really noticeable
when it’s getting in the way

Even the best authorization systems
can be difficult to understand

• Organizations start with highly granular policies, doing
everything by the book

• At some point, something doesn’t work, and a
“temporary” solution emerges

• Temporary solutions are rarely temporary

Even the best intentions can
still end in failure

•Users and Groups are not actually managed by
Kubernetes

• Kubernetes RBAC configuration quickly becomes
difficult to manage at scale

Kubernetes has unique challenges

RBAC Basics
A Quick Recap of

Roles and Cluster Roles define
specific sets of actions allowed

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: Role
metadata:
 name: list-deployments
 namespace: dev
rules:
 - apiGroups: [apps]
 resources: [deployments]
 verbs: [get, list]

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
 name: list-deployments
rules:
 - apiGroups: [apps]
 resources: [deployments]
 verbs: [get, list]

Role Bindings and Cluster Role Bindings
connect users, groups, or service
accounts to roles and clusters roles

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: avery-list-deployments
 namespace: dev
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: list-deployments
subjects:
 - kind: User
 name: avery

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: avery-list-deployments
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: list-deployments
subjects:
 - kind: User
 name: avery

• view: read only access, excludes secrets

•edit: above + ability to edit most resources, excludes
roles and role bindings

•admin: above + ability to manage roles and role
bindings at a namespace level

•cluster-admin: everything

Default Roles

Avery should be able to edit the web
namespace and view the api namespace

A Simple Example

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: avery
 namespace: web
subjects:
- kind: User
 name: avery@example.com
roleRef:
 kind: ClusterRole
 name: edit
 apiGroup: rbac.authorization.k8s.io

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: avery
 namespace: api
subjects:
- kind: User
 name: avery@example.com
roleRef:
 kind: ClusterRole
 name: view
 apiGroup: rbac.authorization.k8s.io

Common Questions
About Kubernetes authorization

Can Avery list pods? If so, why?
SUBJECT ACTION RESOURCE

kubectl auth can-i list pods --as avery
SUBJECTACTION RESOURCE

How do you know why?

{

 "kind": "SelfSubjectAccessReview",

 "apiVersion": "authorization.k8s.io/v1",

 "spec": {

 "resourceAttributes": {

 "namespace": "web",

 "verb": "list",

 "resource": "pods"

 }

 },

 "status": {

 "allowed": true,

 "reason": "RBAC: allowed by RoleBinding \"avery/web\" of  

 ClusterRole \"edit\" to User \"avery@example.com\""

 }

}

RBAC: allowed by RoleBinding

"avery/web" of ClusterRole "edit"

to User "avery@example.com"

What can Avery do?
ACTION SUBJECT

github.com/corneliusweig/rakkess

List everything Avery can do cluster wide
> rakkess —-as avery

List everything Avery can do in dev namespace
> rakkess —-as avery —-namespace dev

Who can list pods?
ACTIONSUBJECT RESOURCE

github.com/aquasecurity/kubectl-who-can

List everyone who can list pods cluster wide
> kubectl-who-can list pods

Can I see a top level overview?

github.com/reactiveops/rbac-lookup

List everyone’s access within the cluster

> rbac-lookup

List access for matching subjects within the cluster

> rbac-lookup avery

Sometimes RBAC isn’t all there is

• kubectl auth can-i - see if a user can perform a specific
action, and if so, why

• rakkess - get that same information for a specific user
across all potential actions

• kubectl-who-can - list who can perform a specific action
in a cluster

• rbac-lookup - get an RBAC (and GKE IAM) overview

Tools to help Understand RBAC

Simple and Effective
Authorization can be

• Follow the principle of least privilege

• Ensure that namespaces are granular enough for your

auth strategy

• Have a clear process for RBAC changes

• Use pull requests and CI to manage your authorization

Effective RBAC

• Don’t manage a new set of users, many
authentication tools can map your existing users to
Kubernetes

• In most cases, many engineers will not need direct
access to a Kubernetes cluster

• Make use of the default roles included with Kubernetes

Simpler RBAC

RBAC Manager

github.com/reactiveops/rbac-manager

Achieve these goals with

•Use more concise configuration

•Group role bindings together with a parent resource

•Automate RBAC changes

• Support ephemeral namespaces and more with
label selectors

RBAC Manager

RBAC Definition
Custom resources that manage role bindings,
cluster role bindings, and service accounts

Deployments simplify managing pods, by
grouping similar resources together and adding
helpful functionality

RBAC Definitions simplify managing role bindings,
by grouping similar resources together and
adding helpful functionality

More Concise
Advantage #1

Representing our simple example from before
with an RBAC Definition

apiVersion: rbacmanager.reactiveops.io/v1beta1
kind: RBACDefinition
metadata:
 name: demo
rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: view
 - namespace: web
 clusterRole: edit

Path to Automation
Advantage #2

• A roleRef is considered immutable - changing access
levels requires deleting and recreating role bindings

• RBAC Manager works similarly to kubectl auth
reconcile to help with that

• Automating revocation of access based on the
absence of a yaml file or spec would also be quite
challenging in CI

Challenges of RBAC Automation

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: view
 - namespace: web
 clusterRole: edit

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: admin
 - namespace: web
 clusterRole: edit

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: admin
 - namespace: web
 clusterRole: edit

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: web
 clusterRole: edit

Label Selectors
Advantage #3

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - clusterRole: edit
 namespaceSelector:
 matchLabels:
 team: api

•More concise and simpler configuration

•A parent resource for role bindings

• RBAC changes are now easy to automate

• Label selectors allow for automatic RBAC config for
ephemeral namespaces and more

RBAC Manager Recap

github.com/corneliusweig/rakkess  
github.com/aquasecurity/kubectl-who-can 
github.com/reactiveops/rbac-lookup  
github.com/reactiveops/rbac-manager

Thanks!

@robertjscott

