
Securing Kubernetes with
Trusted Platform Module

Who are we, anyway?

Alex Tcherniakhovski

alextc@google.com

Security Engineer, Google
Kubernetes Engine

Andrew Lytvynov

awly@google.com

Software Engineer, Google
Kubernetes Engine

mailto:alextc@google.com
mailto:awly@google.com

This talk

Goals:

- sample of TPM capabilities
- theoretical applications
- fuel exploration by users and sig-auth

Non-goals:

- demo real implementations
- pitch cloud provider features
- pitch existing sig-auth projects

Tricky security problems

Node trust bootstrap

- provide kubelet with credentials
- fully automated
- periodic rotation
- protect during Pod or Node compromise

Tricky security problems

First secret problem

- encrypt Secrets at rest
- store encryption key
- protect encryption key

Tricky security problems

Cryptographic audit logging

- audit access to Secrets
- cryptographically-signed log
- verifiable log
- tamper-evident
- even with full master compromise

Agenda

1. Trusted Platform Module (TPM) crash course
2. Node trust bootstrap
3. First secret problem
4. Cryptographically protected audit log

1. Trusted Platform Module (TPM)
crash course

What’s a TPM?

Crypto coprocessor

Cheap, low-powered

Lots of functionality

Hardware or software

Spec designed by Trusted Computing
Group (TCG)

Spec versions 1.2 and 2.0

Image source: https://www.gigaparts.com/gigabyte-trusted-platform-module-2-0-gc-tpm2-0-s.html

https://www.gigaparts.com/gigabyte-trusted-platform-module-2-0-gc-tpm2-0-s.html

Classic use cases:

- Platform integrity
- “is this corp machine in an expected state?”

- Disk encryption
- BitLocker, dm-crypt, etc
- protect encryption keys
- verify integrity of bootloader/kernel/drivers

Machine

OS,
firmware,
bootloader

commands

TPM
NVRAM

RAM

TPM keys

- RSA or ECDSA
- Encryption or signing
- Symmetric or asymmetric
- TPM-bound

- no exfiltration
- can export from TPM, but only encrypted

- Used via specialized commands
- Can be persisted, but usually flushed and re-created on demand

TPM
NVRAM

RAM

Platform Configuration Registers (PCRs)

- Hash value of a chain of events
- Same sequence of events - same PCR value
- TPM2_Quote signs current value with a key

- used to remotely prove PCR state

TPM
NVRAM

RAM

PCR and Measured Boot

source https://google.github.io/tpm-js

https://google.github.io/tpm-js/#pg_attestation

NVRAM (non-volatile RAM)

- Persistent memory
- Small capacity
- Not secure on its own

- Encrypt (seal) valuable data with a TPM key to protect
- Binary data, counters, locks TPM

NVRAM

RAM

Endorsement Key (EK)

- Key baked into TPM
- Certificate signed by TPM vendor in NVRAM
- Used as machine identity

TPM
NVRAM

RAM

A whole lot more...

- RNG
- key hierarchies
- authorization policies
- certification
- dictionary attack protection
- command audit
- external/transferable keys

2. Node trust bootstrap

Node

kubelet

Master

kube-apiserver

1. credentials please

2. here you go!

Attacker has:

- compromised Pod
- compromised Node

Attacker wants:

- exfiltrate application configs
- exfiltrate application Secrets
- persist access

Threat model

Node

kubelet

Master

kube-apiserver

steal node
credentials

credentials please!

Enter X.509 CSRs and Certificates

Host

CSR

Signature

Public key

DNS: example.com
...

Public key

Private key

CA

CA private key

certificate please (+CSR)

signed certificate

Node

kubelet

Master

kube-apiserver

1. certificate please (+CSR)

2. signed certificate

Public key

Private
key

CSR

CA

Problem: validate CSR request

Node trust bootstrap

Node

kubelet

Master

kube-apiserver

1. credentials please
(+shared credential)

2. here you go!

Management
plane

0. write shared
credential

shared
credential

Management
plane

0. write shared
credential

Node

kubelet

Master

kube-apiserver

shared
credential

1. steal
credential

2. credentials please
(+shared credential)

3. here you go!

Management
plane

0. write per-node
credential

Node

kubelet

Master

kube-apiserver

shared
credential

1. steal
credential

2. hi, I’m Node A

3. checks out!

Let’s use a TPM!

EK as proof of machine identity

Node

kubelet

Master

kube-apiserver

2. certificate please
(+EK signature and cert)

5. here you go!

Node private
key

Node
certificate

TPM CA

3. check EK cert
and signature

Management
plane 4. check cluster membership

TPM

1. sign Node
public key

with EK

But what about exfiltration of the Node
credential after provisioning?

Put it in a TPM!

Node

kubelet

Master

kube-apiserver

Management
plane

3. certificate please
(+EK signature and cert)

6. here you go!

TPM

Node
certificate

Node private
key

1. create key

2. sign Node
public key
with EK

TPM CA

4. check EK cert
and signature

5. check cluster membership

kubelet

Master

kube-apiserver

TPM

Node
certificate

2. hi, I’m Node A

Node private
key

4. ugh...

Node A

1. steal
certificate

3. steal
private key?

Management
plane

Attacker can still use Node credential via RCE on the Node.

But things are in a much better state!

- requires constant Node access
- mitigated after patching vuln
- use industry standard for trust bootstrap

Not 100% solution

3. Solving the first secret problem

KMS Plugin

host

kube-api kms-plugin

etcd
master vm

persistent disk

etcd data file

kmstoken

Threat Model

host

kube-api kms-plugin

etcd
master vm

persistent disk

etcd data file

kms

offline disk

token

attacker

etcd data file

The last-mile problem

host

kube-api kms-plugin

etcd
master vm

persistent disk

etcd data file

kms

offline disk

token

attacker

the last mile

token

etcd data file token

Goal: Do NOT get access to keys

host

kube-api kms-plugin

etcd
master vm

persistent disk

etcd data file

kms

offline image

etcd data file

token

attacker

the last mile

Solution: Seal KMS Credential to TPM

host

kube-api kms-plugin

etcd
master vm

persistent disk

etcd data file

kms

offline image

etcd data file

token

attacker

the last mile

TPM

token

token

Key

Apply: PCR Policy

host

kube-api kms-plugin

etcd
master vm

persistent disk

etcd data file

kms

offline image

etcd data file

token

attacker

the last mile

TPM

token

token

PCR 4 72ac...

PCR 7 87be..

Key

source https://google.github.io/tpm-js

Sealing to PCR Values

https://google.github.io/tpm-js/#pg_attestation

source https://google.github.io/tpm-js

Unsealing

https://google.github.io/tpm-js/#pg_attestation

4. Tamper-evident audit logs

kube-api kms-plugin

etcd

master vm

etcd data
file

kms

attacker

TPM

Symmetric
Key

Threat Model

token

token

Building Blocks

TPM AUDIT

TPM HMAC

KMS AEAD

Auditing TPM Commands

auditnew= HauditAlg(auditold || inputHash ||
outputHash)

Logs are stored externally

Issued certificate #1:
Certificate:
 Data:
 Serial Number:
 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
 pub:
 00:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

TPM2-Sign ...

TPM Audit Register

2c503..

Logs are stored externally

Issued certificate #1:
Certificate:
 Data:
 Serial Number:
 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
 pub:
 00:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

TPM2-Sign ...

TPM Audit Register

9b863..

Issued certificate #2:
Certificate:
 Data:
 Serial Number:
 19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
 pub:
 00:c7:22:79:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

Attacker gets a certificate

Issued certificate #1:
….
Issued certificate #2
...

TPM2-Sign ...

TPM Audit Register

8b300..

Issued certificate #3:
Certificate:
 Data:
 Serial Number:
 20:e6:fc:32:b7:41:8a:d5:00:5e:45:b9
 pub:
 00:a7:229:79:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

Logs are examined externally

Issued certificate #1:
Certificate:
 Data:
 Serial Number:
 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
 pub:
 00:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

TPM2-Sign ...

TPM Audit Register

8b300..

Issued certificate #2:
Certificate:
 Data:
 Serial Number:
 19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
 pub:
 00:c7:22:79:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

Logs are examined externally

Issued certificate #1:
Certificate:
 Data:
 Serial Number:
 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
 pub:
 00:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

TPM2-Sign ...

TPM Audit Register

9b863....≠ 8b300

Issued certificate #2:
Certificate:
 Data:
 Serial Number:
 19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
 pub:
 00:c7:22:79:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

What if attackers reset and replay

Issued certificate #1:
Certificate:
 Data:
 Serial Number:
 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
 pub:
 00:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

TPM2-Sign ...

TPM Audit Register

Num Of Logs = 2

Issued certificate #2:
Certificate:
 Data:
 Serial Number:
 19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
 pub:
 00:c7:22:79:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:

Building Blocks

TPM AUDIT ☑

TPM HMAC

KMS AEAD

Hash-Based Message Authentication Code

Message

Key

One-Way Digest Func Digest

TPM2_HMAC

Message

Key

HMAC Digest

TPM

TPM AUDIT ☑

TPM HMAC ☑

KMS AEAD

Building Blocks

Symmetric Encryption

P@ssword01

sAuBbNCJaufjo3PZS16NDHBjf0T8Z4bXObV6U=

KMS

Key

AEAD Encryption

AAD: system/secret/foo, plaintext: P@ssw0rd01

Ciphertext: x5Q...B Tag: UyqYl_jwI7_Q

KMS

Key

AAD: system/secret/foo, ciphertext: x5QOCAB0M..

P@ssw0rd01

KMS

Key

AEAD Encryption

AEAD - AAD must match

AAD: system/secret/bar, ciphertext: x5QOCAB0M..

Error

KMS

Key

TPM AUDIT ☑

TPM HMAC ☑

KMS AEAD ☑

Building Blocks

Use TPM2_HMAC to generate AAD

TPM2_HMAC (system/my-dba-pwd) P@ssw0rd01

Additional Auth Data Plaintext

kube-api kms-plugin

etcd

master vm

TPM

Symmetric
Key

Putting it all together

proxy

Cloud Provider

system/my-api-key

system/my-dba-pwd

kubectl get secret my-api-key
kubectl get secret my-dba-key

On-prem

TPM2_HMAC

KMS
AAD: TPM2_HMAC(KEY)

Audit: d81d4b2...

 Audit logs

Attacks not covered
• Reading directly from kube-apiserver cache
• Reading KEK from kms-plugin cache
• Waiting for a request from a legitimate user and intercepting the

response

Summary

When not to use TPMs

• Performance-sensitive crypto (unless virtual)
• Bulk encryption
• As a substitute for physical security, it is tamper-resistant not

tamper-proof

References

• TPM 2.0 specification
• Turtles All the Way Down: Managing Kubernetes Secrets
• Securing Kubernetes Secrets
• Continuous Tamper-proof Logging using TPM2.0
• Cryptographic Support for Secure Logs on Untrusted Machines
• go-tpm library
• K8S KMS Plugin for Google CloudKMS

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://youtu.be/rLHJZE2XKl8
https://youtu.be/DNKcRUyz4Hw
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab13008.pdf
https://www.schneier.com/academic/paperfiles/paper-secure-logs.pdf
https://github.com/google/go-tpm
https://github.com/GoogleCloudPlatform/k8s-cloudkms-plugin

