

KubeCon CloudNativeCon

KubeCon

CloudNativeCon

Europe 2019

Running high-performance workloads at scale with k8s eBay's best practices + lessons learned.

Xin Ma <u>xima@ebay.com</u>

eBay's k8s deployments

Build, Run, and Manage high-performing k8s clusters

Build k8s with k8s, at scale (eBay's fleet management system based on k8s)
k8s control plane performance

Running high-performance workloads in k8s

- Containers and Pod specs
- Host Runtime performance
- Network performance

Summary, what's next for us, Q&A

eBay's k8s deployments

tess.IO

✤50+ Clusters

- Various environments and VPCs
 - Dev/Staging/Production. Flat/Overlay network.
- Multiple 2k+ node sized clusters
 - 24k+ hosts, mostly baremetals. 160k+ pods.

- Various production workloads
 - Web, DBs, Search Engines, Hadoop, etc.

On the Edge

Envoy proxy / software LB

Europe 2019

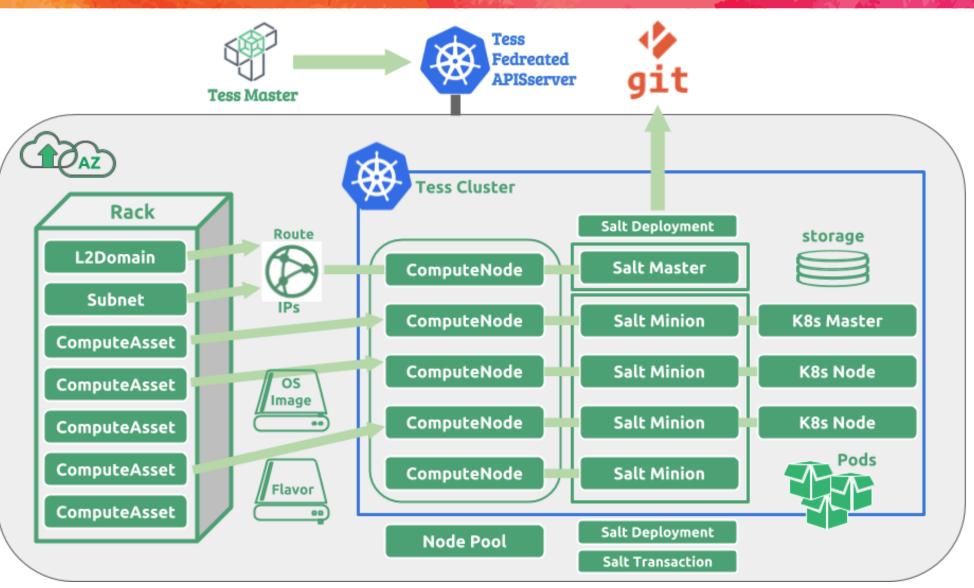
Build, Run, & Manage high-performing k8s clusters

Fleet management system

CRDs

- ✤ Models the Datacenter. Racks/Switches/Subnets, etc.
- ✤ Models the OSImages, ComputeNodes, k8s nodes, and k8sClusters.

Controllers


- Provision ComputeNodes like pods, create NodePools like deployments
- Create and install SaltMaster on top of a ComputeNode, from git
- ✤ Install k8s at computenodes, with SaltMinions, just like creating pods
- ✤ Install and manage multiple kube nodes with SaltDeployments, just like deployments
- Transactions, scheduler and rolling update strategies, etc.

↔GitOps

Deep Dive at the upcoming Shanghai KubeCon.

Build and Manage k8s, with k8s.

ebay

KubeCon

CloudNativeCon

Control Plane Performance

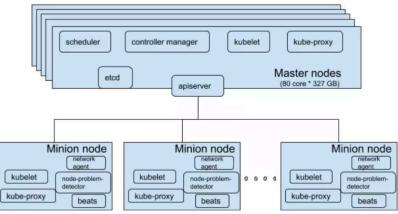
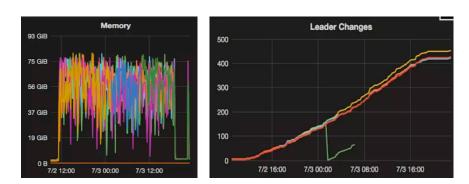



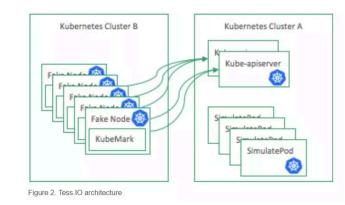
Figure 1. Tess.IO cluster architecture

✤ k8s Control plane architecture

- ✤ 5 Master nodes. active-active as an etcd cluster
 - Apiserver, local etcd, KCM, and scheduler
- ✤ Kube Nodes
 - kubelet & kube-proxy
 - Daemsonsets / add-ons for cni, storage, monitoring, etc.

- performance challenges (running 5k node with 100k+ pods)
 - Heavy LIST and Watcher API calls
 - etcd
 - High memory %
 - Frequent leader election changes
 - scheduling: delay
 - ✤ apiserver frequent crashes & restarts.

Control Plane Performance



Benchmarking

- Kubemark simulating 5k nodes.
- Test cases.
 - creating + deleting 10k pods in parallel
 - get to know the cluster's limits max # of lists, watchers, etc.

eBay's performance practices to run large k8s clusters

- ✤ apiserver & etcd
 - evenly distribute load to 5 apiservers
 - dedicated ssd for etcd guaranteed iops
 - separate drives for etcd data and etcd snapshots
 - split events
 - Increase max-mutating-requests-inflight
 - rate limiting
- Writing good controllers
 - List option & resource version apiserver cache or directly hit etcd
 - Use informers
 - Build-in metrics to measure controllers performance
- cluster lifecycle management
 - Bad nodes and terminating pods slow down scheduling.
 - Enhanced FilteredList
 - Clean up bad node and terminating pods
 - Fleet management system node lifecycle management

KubeCon

CloudNativeCon Europe 2019

Running high-performance workloads in Kubernetes

Containers & Pod spec

Build containers (containerization)

- native first, and/or do it smart
 - Split services into multiple containers, and run sidecars
- systemd?
 - It's ok to run systemd but it's a bit too much...
 - Lesson learned: <u>#5795</u> systemd before v234 with fixed 65k RLIMIT_NOFILE
 - Use supervisord, dumb-init, or write your own init script
 - Logging: volume or stdout ?
- Be careful about capabilities you give...
 - Lesson learned: imagine a container with *tuned* getting SYS_ADMIN cap
- Container resource limits Java's thread issues.
 - ✤ new jdk, or LXCFS with cpuset

✤Pod Spec

- Pass pod info into containers downwardAPI
- Burstable pods for over-commitment
- ✤ Use probes
 - example: enable & disable traffic
- emptyDir for ephemeral
 - Only option, not a perfect one. e.g. size limit concerns
 - ✤ CSI Inline Volume Support <u>#596</u>
- Stateful pods
 - Statefulset with high-performance local volume

volumes: – downwardAPI: defaultMode: 420 items: - path: "podname" fieldRef: fieldPath: metadata.name - path: "annotations' fieldRef: fieldPath: metadata.annotations - path: "cpu limit" resourceFieldRef: containerName: mycontainer resource: limits.cpu - path: "mem limit" resourceFieldRef: containerName: mycontainer

resource: limits.memory

name: podinfo

volumes: - emptyDir: sizeLimit: "40Gi' name: ebay

Host Runtime performance

✤Kernel

- Unify the platform and manage less kernel versions
 - Run latest kernel
 - drivers compatibility. ODM, GPU, etc.

CPU & Power

- p-state & c-state
 - Scaling governors: performance v.s. powersave
 - max-cstate: 0 or 9
 - Not absolute: if you need turbo
- softirq & irqbalance/affinity

✤Memory

✤ THP?

- Workload specific
- Swap
 - avoid swap as much as possible, in k8s
 - Lesson learned: a small noisy daemon container could slow down the host
 - Overwrite MemorySwappiness default to 0 unless pod annotates

Host Runtime performance

*****I/O

✤ I/O scheduler: cfq v.s. deadline

* Storage

- Storage classes
 - Local volume & CSI
 - Partitions
 - LVM
 - Stand-alone Cinder

✤system config

- ✤ Limit max_pid's
- ✤ Others
 - vm.max_map_count (elastic search)
 - max sectors size / max_sectors_kb
 - vm.min_free_kbytes
 - etc.

Storage Class	IOPS/Throughput	Use Cases	Storage Solutions
Hot Tier	>50K IOPS 500 MB/s	NoSQL, eBay In-house App	Local SSD
Standard Tier	300 IOPS 150 MB/s	Archive	Ceph HDD based

Network performance

RPS and RFS

- Receive Packet Steering (RPS)
- Receive Flow Steering (RFS)
 - set RPS and RFS at veth device
 - close to Baremetal throughput & retransmissions

✤ipvlan

- ovs bridge for common workloads
- ipvlan for high-performance
- ipvlan + ebpf? upcoming

✤ipvs caching

kube-proxy

✤BBR

- generally adopted by
 - search engine apps with high throughput
 - edge computing and software LBs
- ✤ tc qdisc fq_codel

Manage the performance

Monitor your performance

- ✤ API server and etcd metrics
- Node Exporter and other DS -> Prometheus (for nodes)
- Expose metrics from your controllers

Benchmarking

new (ODM) hardware, kernel, or driver, etc.
Burn-In tests

✤OS image CICD

- ✤ We build our own OS Image for host runtime
- Workload certification is built-in with OS cicd

Tools and references

- <u>http://www.brendangregg.com/linuxperf.html</u>
- perf
- <u>http://www.brendangregg.com/perf.html</u>
- blktrace and btt
- <u>Block I/O Layer Tracing: blktrace</u>. Alan D. Brunelle (Alan.Brunelle@hp.com). April, 2006.
- <u>btt User Guide</u>. Alan D. Brunelle (Alan.Brunelle@hp.com). October 30, 2008
- fio and sysbench
- iotop
- iperf3
- dstat

CloudNativeCon

KubeCon

Summary

- ✤ Fleet management
 - ↔ Build and manage k8s with k8s (Shanghai kubecon)
- High performance k8s clusters control plane
- Run high-performance workloads in k8s

✤What's Next

- cpuset and numa
- ipvlan + ebpf
- ✤ resource mgmt.
 - blkio cgroup
 - network qos

