Rootless, Reproducible & Hermetic
Secure container build showdown

Andrew Martin and Pi Unnerup

@sublimino and @controlplaneio

7\

controlplane

{irme
- Andy
= Dev-like
- Sec-ish
- Ops-y

VAN

controlplane

LR ‘ -
u%; ”I '\" S ,:-..1
2 TEEE .
0 Contalner image build securityf™ i

= ERANSSHRGTTY BREIDRES 8 UNESOME > e e G S L 9, Pl

o Rootlessness, reproducibility, and hermet|C|sm ﬂ'

e B i S = :r...x:a: S B .l

. Attack and defense for an OCl image bund 4 ‘;[-

0 Companson of present and future toollng o s L VAR

° Secunng untrusted builds

%

The Root of All Evil

The Root of All Evil is

unnecessarily
running

Processes
asS

root
I\

Running Containerised *Processes™ as root

e Not a “vulnerability”
e Handy basis to pivot - many operations gated by root/capabilities

e Dangerous when any namespace is disabled (see --privileged)

o E.g. can permit reconfiguration of network namespace’s NICs

o Or traversal of host-mounted paths
e Prerequisite for many attacks
o See runC container breakout (CVE-2019-5736)

e No protection from accidental misconfiguration of other security features

o Access to /proc, /sys, or /dev may be...terminal A
e Attackers want root inside a compromised container

controlplane

https://www.openwall.com/lists/oss-security/2019/02/11/2

Running Container *Runtimes™ as root

Rootless container build?

e Noid 0 process on host (e.g.
container runtime)

e No root capabilities for RUN
commands in build namespaces

Rootless container build?

No id O process on host (e.g.
container runtime)

No root capabilities for RUN
commands in build namespaces
Protects from a class of privilege
escalation attacks

User namespaces go a long way
to fixing this

User Namespaces

e V1 still problematic

e Guest to host UIDs remapping Hierarchy of user namespaces
e Guestrootis UID 0 in the UserNS with full 0 (root) 1000 (user) 5099 65533
capabilities, with restrictions | |
o Inaccessible files, inability to insert kernel penSepace eusly
modules, rebooting disabled, ... : ! : :
o Root can be mapped to any user on the B __fLRERs S & i
host | ; § nobody
e Unprivileged users can only map their emespaceleveld |
: namespace level 2 0 (root) 499!
UII?/GIQ (to |t§elf or root) _ e | | 5o
e ShiftFS incoming level max=32

https:/endocode.com/blog/2016/01/22/linux-containers-and-user-namespaces/

h/t Aleksa Sarai and Akihiro Suda: The State of Rootless
Containers

controlplane

https://kernel.ubuntu.com/git/sforshee/linux.git/log/?h=shiftfs-demo
https://twitter.com/lordcyphar
https://twitter.com/_akihirosuda_
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://endocode.com/blog/2016/01/22/linux-containers-and-user-namespaces/

Reproducibility: Attacking Compiler Builds

e Xcodeghost

e Win32 Induc(tion) virus

controlplane

Reproducible
Builds

® Reflections on

Trusting Trust
(Thompson)

Communications of the ACM, 27:8, Aug
1984

Debian Reproducible
Builds (SoC ‘19)

|n't0t0 build attestations

Reproducible Builds
Project

Contributing Projects: Arch Linux,
Baserock, Bitcoin, coreboot, Debian,
ElectroBSD, F-Droid, FreeBSD, Fedora,
GNU Guix, Monero, NetBSD, NixOS,
OpenEmbedded, openSUSE, OpenWirt,
Qubes OS, Symfony, Tails, Tor Browser,
Webconverger, Yocto Project

http://dl.acm.org/citation.cfm?id=358198.358210
http://dl.acm.org/citation.cfm?id=358198.358210
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/SummerOfCode2019/Projects/ReproducibleBuilds
https://in-toto.github.io/
https://reproducible-builds.org
https://reproducible-builds.org
https://reproducible-builds.org/who#Arch%20Linux
https://reproducible-builds.org/who#Baserock
https://reproducible-builds.org/who#Bitcoin
https://reproducible-builds.org/who#coreboot
https://reproducible-builds.org/who#Debian
https://reproducible-builds.org/who#ElectroBSD
https://reproducible-builds.org/who#F-Droid
https://reproducible-builds.org/who#FreeBSD
https://reproducible-builds.org/who#Fedora
https://reproducible-builds.org/who#GNU%C2%A0Guix
https://reproducible-builds.org/who#Monero
https://reproducible-builds.org/who#NetBSD
https://reproducible-builds.org/who#NixOS
https://reproducible-builds.org/who#OpenEmbedded
https://reproducible-builds.org/who#openSUSE
https://reproducible-builds.org/who#OpenWrt
https://reproducible-builds.org/who#Qubes%20OS
https://reproducible-builds.org/who#Symfony
https://reproducible-builds.org/who#Tails
https://reproducible-builds.org/who#Tor%20Browser
https://reproducible-builds.org/who#Webconverger
https://reproducible-builds.org/who#Yocto%20Project

Trust These Men

e Reflections on Trusting Trust
(Thompson) Communications of
the ACM, 27:8, Aug 1984

http://dl.acm.org/citation.cfm?id=358198.358210

T } l

L L

SNBSS =
-

——

—o-"

Do we trust ihb bﬁlld

f’

ROV sttt
.—"".-"'I.

\.'11\ '

'%g

!

%ach"i‘r_jés-‘? X

- oy : >
) \» . A

\\i‘

\

\

In-toto

test build package

&a&a&a&a

controlplane

Reproducible OCI
Builds

e Local or pinned dependencies
e No non-deternministic/network calls
e Identical product every time
o No time-based behaviour or output
o Identical output ordering
o Bit-for-bit similarity
e Signable and tamper-proof output

OClI v2

e Issues with Golang’s GNU Tar

implementation
o OCI spec includes “bugs and all”
e OCI v2 looking to fix layering,
distribution, and reproducibility

o Allin progress
o ca-sync a possible solution

e Encrypted image proposal o P E CONTAINER
in-flight INITIATIVE

7\

controlplane

https://github.com/opencontainers/image-spec/issues/747

Hermetic Builds

e No, not Hermetism...

Hermetic Builds

e No, not Hermetism...

e Hermetic!
o no impact on other builds
o doesn't rely on external inputs
o able to run untrusted Dockerfiles?

Attacking Container Image Builds

e Malicious commands in RUN directive can

attack host
o Host's non-loopback network
ports/services
o Enumeration of other network entities
(cloud provider, build infrastructure,
network routes to production)

e Malicious FROM image has access to
build secrets

e Malicious image has ONBUILD directive

e Docker-in-docker can lead to host
breakout

e (Odays, kernel bugs, network attack surface

controlplane

Defending

e Prevent network egress

e Isolate from the host's kernel

e Execute RUN commands a non-root user
in container filesystem

e Run build process as a non-root user
o orin auser namespace
e Share nothing non-essential

controlplane

Where to Get Burned -->

e User rootlessnesses
o Build tool (e.g. docker build, daemon)
o RUN command invocation during build
e Host hermeticism
o Kernel
o Filesystem, sockets/IPC
o Other containers/builds
e Network hermeticism

o Host
o Other reachable hosts
o Other builds

e Dockerfile reproducibility,

hermeticism
o Possible malicious FROM or RUN

Secure
Container

Build
Showdown

Buildkit

e rootless (optional)

e daemon-less (optional)

e Can run rootless (currently experimental)
o UserNS, rootlesskit, SUID binary for apt

e Integrated with Docker from v18.06

o Can run as standalone daemon
e Rootless BuildKit can be executed inside Docker and

Kubernetes
o Thanks to ProcMount in securityContext / PodSecurityPolicy
e Possible entittement model (inspired by Moby
Entitlements)?
o Fine-grained permissions around RUN commands in build
e Can parallelize step execution via Low-level Builder

(LLB) DAG

https://github.com/moby/buildkit/blob/master/docs/rootless.md#security-consideration
https://github.com/rootless-containers/rootlesskit
https://github.com/kubernetes/kubernetes/pull/64283
https://github.com/moby/buildkit/issues/238
https://github.com/moby/buildkit/issues/238

how “img" works (low level)

Img

unprivileged user

e rootless l
e daemon-less

e Consumes BuildKit as a library d
o Still requires SUID binaries for apt
m newuidmap(1)/newgidmap(1)
m prepares SUBUIDs/SUBGIDs

e Uses unprivileged mounting l

o Hardened build with seccomp
build instruction like RUN

o User namespaces enabled

runc rootless container with

unshare user & mount namespace and
re-exec ourself

seccomp, setgroups,
user, mount, uts, pid, ipc namespaces

LXC

e Unprivileged since 2013
e Lower-level components than dev-facing Docker
o Powered Docker (pre-libcontainer)

e Supports OCI via script

o Runs fully rootless
e Otherwise LXD requires daemon to be run as root

e Supports Dockerfile-like builds with
https://aithub.com/hverr/Ixdfile

controlplane

https://asciinema.org/a/165784
https://github.com/hverr/lxdfile

uMmoci

e rootless (and SUID-less, but slower than SUID
approach)
e daemon-less

e umoci modifies Open Container images
o Wraps runC (@lordcyphar also a runC maintainer)
m runC rootless support: 1.0.0-rc4 (March 2017)
o Emulates CAP_DAC_OVERRIDE with recursive chmod
m And some other syscalls, using ptrace

e Does not require setting up SUBUIDs/SUBGIDs (which
require SUID binary) for unpacking archives with multiple
UIDs/GIDs

o Uses user.rootlesscontainers xattr instead of chown(2)
o No kernel namespacing, VFS-based

controlplane

https://mobile.twitter.com/lordcyphar

Kaniko

e rootless
e daemon-less (but runs inside a container without
--privileged)
e Multiple build modes
o Kubernetes
o gVisor
o Google Cloud Build
o Docker

e Backend for Knative Build
e Executes RUN commands in the same namespace/rootfs

as Kaniko itself
o Commands are run as root inside the container A
o Does not isolate /secret mount from the FROM image

controlplane

https://github.com/GoogleContainerTools/kaniko/issues/106

buildah

e rootless (optional)
e daemon-less
e Multiple isolation modes via

--isolation=ISOLATION
o OCI (default)

o Rootless (with UserNS)
o Chroot (root in unprivileged container)
e Uses Slip4netns for networking

controlplane

makisu

rootless
daemon-less
Inspired by Bazel, but addresses lack of RUN

Similar model to Kaniko
o Addresses performance for “large images”
o Doesn’t require nested containers

https://github.com/uber/makisu

controlplane

https://github.com/uber/makisu

Bazel

e rootless
e daemon-less

e Ultimate hermetism, reproducibility
o Because RUN command don't exist

e Can build Java, C++, Android, iOS, Go, and more
e Has https://github.com/bazelbuild/rules docker for
Docker builds

e Minimum usability

7\

controlplane

https://github.com/bazelbuild/rules_docker

Google Cloud Build

e \Vell isolated, rootlessness not so worrisome

e Hermetic with regards to other builds
o But not the internet

e Reliant on cloud provider’s security model . §

controlplane

Fulfilment of
requirements?

Build Tools Analysis Summary

e Rootless
o Everybody, but implementation-specific caveats
abound

e Reproducible
o No build tools are un-reproducible by design
o But output is a function of RUN behaviour

e Hermetic
o Varying degrees, nothing absolute

controlplane

But Why Choose One: CBI Edition

e Container Builder Interface for Kubernetes

e Provides a vendor-neutral abstraction for building and pushing
container images in Kubernetes

e Supports

o Docker, BuildKit, Buildah, kaniko, img, Google Cloud Container Builder, Azure Container
Registry Build, OpenShift Source-to-Image...

e https://qithub.com/containerbuilding/cbi

7\

controlplane

https://github.com/containerbuilding/cbi

Untrusted Image
Builds?

Untrusted Image Builds

e Are scary
e Will *fix everything”
e Are almost ready
o Requires user namespace, a hypervisor, or
root emulation
o Kaniko with gVisor
o Hosted tooling
o
e BuildKit probably closest
o Used in OpenFaa$S Cloud for
user-supplied builds
o But still templated, not fully untrusted
e [fin doubt: isolate with a VM

The Future

Rootless runC
Usernetes

ShiftFS

Hypervisor proliferation
Unikernels?

Exciting Times Ahead

http:/explosm.net/shorts/66/the-painting

controlplane

http://explosm.net/shorts/66/the-painting

https://kubesec.io

qithub.com/controlplaneio/kubesec

Security risk
Analysis for

Kubernetes

Resources

Now with
100% more
Open Sauce!

KUBESEC.IO - V2

‘= v1 APl is deprecated, please read the release notes

Security risk analysis for Kubernetes
resources

Live Demo
Submit this YAML to Kubesec

apiVersion: v1
kind: Pod
metadata:
name: kubesec-demo
spec:
containers:
- name: kubesec-demo
image: gcr.io/google-samples/node-hello:1.0
securityContext:
readOnlyRootFilesystem: true

This uses ControlPlane’s hosted API at v2.k

https://github.com/controlplaneio/kubesec

Kubesec.io - example insecure pod

"object": "Pod/kubesec-demo.default",
"valid": true,
"message": "Passed with a score of 1 points",
"score": 1,
"scoring": {
"advise": [
{
"selector": "containers[] .securityContext .capabilities .drop",
"reason"”: "Reducing kernel capabilities available to a container limits its attack
surface"
¥
{
"selector": ".spec .serviceAccountName",
"reason": "Service accounts restrict Kubernetes API access and should be configured
with least privilege"
¥
{
"selector": "containers[] .resources .requests .cpu",
"reason"”: "Enforcing CPU requests aids a fair balancing of resources across the
cluster”

¥

controlplane

A CO“trOlplane Services Training Subscribe Articles Jobs Contact

Cloud Native DevSecOps As Code (7

ControlPlane is a cloud native security consultancy with industry-leading expertise
architecting, deploying, and maintaining high compliance Kubernetes systems.

We have deployed our solutions to highly regulated industries such as UK critical
national infrastructure organisations, international financial institutions, big four
accountants, insurance, healthcare, and media providers.

We conduct threat research, cloud native security training, and develop best
practice DevSecOps implementations. We are now offering our patterns and
practices as code on a supported subscription basis.

Get an early invitation

https://control-plane.io/cnhsec

https://control-plane.io/cnsec

Fin!

With thanks to:
e Aleksa Sarai
e Akihiro Suda
e Christian Brauner

References:
e https://rootlesscontaine.rs/ e https://in-toto.qithub.io
e htitps://github.com/rootless-containers/rootlesskit e https://kernel.ubuntu.com/qgit/sforshee/linux.qgit/log/?
e https://github.com/AkihiroSuda/buildbench h=shiftfs-demo
e https://github.com/rootless-containers/slirp4netns e httos://aithub.com/rootless-containers/usernetes
° httgs.//wva.slldeshare.net/Aklh|roSuda/the-state-of—rootle e hitos://nabla-containers.qithub.io/
ss-containers nltps-Anania-contaners. ginub. 10!

e https:/events.linuxfoundation.org/wp-content/uploads/201 https://qithub.com/SoloS/solos

7/11/Comparing-Next-Generation-Container-lmage-Buildi
ng-Tools-OSS-Akihiro-Suda.pdf

controlplane

https://twitter.com/lordcyphar
https://twitter.com/_akihirosuda_
https://mobile.twitter.com/brau_ner
https://rootlesscontaine.rs/
https://github.com/rootless-containers/rootlesskit
https://github.com/AkihiroSuda/buildbench
https://github.com/rootless-containers/slirp4netns
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Comparing-Next-Generation-Container-Image-Building-Tools-OSS-Akihiro-Suda.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Comparing-Next-Generation-Container-Image-Building-Tools-OSS-Akihiro-Suda.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Comparing-Next-Generation-Container-Image-Building-Tools-OSS-Akihiro-Suda.pdf
https://in-toto.github.io
https://kernel.ubuntu.com/git/sforshee/linux.git/log/?h=shiftfs-demo
https://kernel.ubuntu.com/git/sforshee/linux.git/log/?h=shiftfs-demo
https://github.com/rootless-containers/usernetes
https://nabla-containers.github.io/
https://github.com/Solo5/solo5

