
Rootless, Reproducible & Hermetic
Secure container build showdown

Andrew Martin and Pi Unnerup
 @sublimino and @controlplaneio

I’m:
- Andy
- Dev-like
- Sec-ish
- Ops-y

● Container image build security
● Rootlessness, reproducibility, and hermeticism
● Attack and defense for an OCI image build
● Comparison of present and future tooling
● Securing untrusted builds

The Root of All Evil

6

unnecessarily
running

processes
as

root

The Root of All Evil is

Running Containerised *Processes* as root
● Not a “vulnerability”

● Handy basis to pivot - many operations gated by root/capabilities

● Dangerous when any namespace is disabled (see --privileged)
○ E.g. can permit reconfiguration of network namespace’s NICs

○ Or traversal of host-mounted paths

● Prerequisite for many attacks
○ See runC container breakout (CVE-2019-5736)

● No protection from accidental misconfiguration of other security features
○ Access to /proc, /sys, or /dev may be...terminal

● Attackers want root inside a compromised container

https://www.openwall.com/lists/oss-security/2019/02/11/2

Running Container *Runtimes* as root

Rootless container build?
● No id 0 process on host (e.g.

container runtime)
● No root capabilities for RUN

commands in build namespaces

Rootless container build?
● No id 0 process on host (e.g.

container runtime)
● No root capabilities for RUN

commands in build namespaces
● Protects from a class of privilege

escalation attacks
● User namespaces go a long way

to fixing this

● V1 still problematic
● Guest to host UIDs remapping
● Guest root is UID 0 in the UserNS with full

capabilities, with restrictions
○ Inaccessible files, inability to insert kernel

modules, rebooting disabled, ...
○ Root can be mapped to any user on the

host
● Unprivileged users can only map their

UID/GID (to itself or root)
● ShiftFS incoming

h/t Aleksa Sarai and Akihiro Suda: The State of Rootless
Containers

User Namespaces

https://endocode.com/blog/2016/01/22/linux-containers-and-user-namespaces/

https://kernel.ubuntu.com/git/sforshee/linux.git/log/?h=shiftfs-demo
https://twitter.com/lordcyphar
https://twitter.com/_akihirosuda_
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://endocode.com/blog/2016/01/22/linux-containers-and-user-namespaces/

Reproducibility: Attacking Compiler Builds

● Xcodeghost

● Win32 Induc(tion) virus

Reproducible
Builds
● Reflections on

Trusting Trust
(Thompson)
Communications of the ACM, 27:8, Aug
1984

● Debian Reproducible
Builds (SoC ‘19)

● in-toto build attestations

● Reproducible Builds
Project
Contributing Projects: Arch Linux,
Baserock, Bitcoin, coreboot, Debian,
ElectroBSD, F-Droid, FreeBSD, Fedora,
GNU Guix, Monero, NetBSD, NixOS,
OpenEmbedded, openSUSE, OpenWrt,
Qubes OS, Symfony, Tails, Tor Browser,
Webconverger, Yocto Project

http://dl.acm.org/citation.cfm?id=358198.358210
http://dl.acm.org/citation.cfm?id=358198.358210
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/SummerOfCode2019/Projects/ReproducibleBuilds
https://in-toto.github.io/
https://reproducible-builds.org
https://reproducible-builds.org
https://reproducible-builds.org/who#Arch%20Linux
https://reproducible-builds.org/who#Baserock
https://reproducible-builds.org/who#Bitcoin
https://reproducible-builds.org/who#coreboot
https://reproducible-builds.org/who#Debian
https://reproducible-builds.org/who#ElectroBSD
https://reproducible-builds.org/who#F-Droid
https://reproducible-builds.org/who#FreeBSD
https://reproducible-builds.org/who#Fedora
https://reproducible-builds.org/who#GNU%C2%A0Guix
https://reproducible-builds.org/who#Monero
https://reproducible-builds.org/who#NetBSD
https://reproducible-builds.org/who#NixOS
https://reproducible-builds.org/who#OpenEmbedded
https://reproducible-builds.org/who#openSUSE
https://reproducible-builds.org/who#OpenWrt
https://reproducible-builds.org/who#Qubes%20OS
https://reproducible-builds.org/who#Symfony
https://reproducible-builds.org/who#Tails
https://reproducible-builds.org/who#Tor%20Browser
https://reproducible-builds.org/who#Webconverger
https://reproducible-builds.org/who#Yocto%20Project

Trust These Men

15

● Reflections on Trusting Trust
(Thompson) Communications of
the ACM, 27:8, Aug 1984

http://dl.acm.org/citation.cfm?id=358198.358210

Do we trust the build machines?

in-toto

17

● Local or pinned dependencies
● No non-deternministic/network calls
● Identical product every time

○ No time-based behaviour or output
○ Identical output ordering
○ Bit-for-bit similarity

● Signable and tamper-proof output

Reproducible OCI
Builds

● Issues with Golang’s GNU Tar
implementation

○ OCI spec includes “bugs and all”

● OCI v2 looking to fix layering,
distribution, and reproducibility

○ All in progress
○ ca-sync a possible solution

● Encrypted image proposal
in-flight

OCI v2

https://github.com/opencontainers/image-spec/issues/747

● No, not Hermetism...

Hermetic Builds

● No, not Hermetism...
● Hermetic!

○ no impact on other builds
○ doesn't rely on external inputs
○ able to run untrusted Dockerfiles?

Hermetic Builds

Attacking Container Image Builds
● Malicious commands in RUN directive can

attack host
○ Host's non-loopback network

ports/services
○ Enumeration of other network entities

(cloud provider, build infrastructure,
network routes to production)

● Malicious FROM image has access to
build secrets

● Malicious image has ONBUILD directive
● Docker-in-docker can lead to host

breakout
● 0days, kernel bugs, network attack surface

Defending
● Prevent network egress
● Isolate from the host's kernel
● Execute RUN commands a non-root user

in container filesystem
● Run build process as a non-root user

○ or in a user namespace
● Share nothing non-essential

Where to Get Burned -->
● User rootlessnesses

○ Build tool (e.g. docker build, daemon)
○ RUN command invocation during build

● Host hermeticism
○ Kernel
○ Filesystem, sockets/IPC
○ Other containers/builds

● Network hermeticism
○ Host
○ Other reachable hosts
○ Other builds

● Dockerfile reproducibility,
hermeticism

○ Possible malicious FROM or RUN

Secure
Container
Build
Showdown

Buildkit
● rootless (optional)
● daemon-less (optional)
● Can run rootless (currently experimental)

○ UserNS, rootlesskit, SUID binary for apt

● Integrated with Docker from v18.06
○ Can run as standalone daemon

● Rootless BuildKit can be executed inside Docker and
Kubernetes

○ Thanks to ProcMount in securityContext / PodSecurityPolicy

● Possible entitlement model (inspired by Moby
Entitlements)?

○ Fine-grained permissions around RUN commands in build

● Can parallelize step execution via Low-level Builder
(LLB) DAG

https://github.com/moby/buildkit/blob/master/docs/rootless.md#security-consideration
https://github.com/rootless-containers/rootlesskit
https://github.com/kubernetes/kubernetes/pull/64283
https://github.com/moby/buildkit/issues/238
https://github.com/moby/buildkit/issues/238

Img
● rootless
● daemon-less
● Consumes BuildKit as a library

○ Still requires SUID binaries for apt
■ newuidmap(1)/newgidmap(1)
■ prepares SUBUIDs/SUBGIDs

● Uses unprivileged mounting
○ Hardened build with seccomp
○ User namespaces enabled

LXC
● Unprivileged since 2013
● Lower-level components than dev-facing Docker

○ Powered Docker (pre-libcontainer)

● Supports OCI via script
○ Runs fully rootless

● Otherwise LXD requires daemon to be run as root
● Supports Dockerfile-like builds with

https://github.com/hverr/lxdfile

https://asciinema.org/a/165784
https://github.com/hverr/lxdfile

umoci
● rootless (and SUID-less, but slower than SUID

approach)
● daemon-less
● umoci modifies Open Container images

○ Wraps runC (@lordcyphar also a runC maintainer)
■ runC rootless support: 1.0.0-rc4 (March 2017)

○ Emulates CAP_DAC_OVERRIDE with recursive chmod
■ And some other syscalls, using ptrace

● Does not require setting up SUBUIDs/SUBGIDs (which
require SUID binary) for unpacking archives with multiple
UIDs/GIDs

○ Uses user.rootlesscontainers xattr instead of chown(2)
○ No kernel namespacing, VFS-based

https://mobile.twitter.com/lordcyphar

Kaniko
● rootless
● daemon-less (but runs inside a container without

--privileged)
● Multiple build modes

○ Kubernetes
○ gVisor
○ Google Cloud Build
○ Docker

● Backend for Knative Build
● Executes RUN commands in the same namespace/rootfs

as Kaniko itself
○ Commands are run as root inside the container
○ Does not isolate /secret mount from the FROM image

https://github.com/GoogleContainerTools/kaniko/issues/106

buildah
● rootless (optional)
● daemon-less
● Multiple isolation modes via

--isolation=ISOLATION
○ OCI (default)
○ Rootless (with UserNS)
○ Chroot (root in unprivileged container)

● Uses Slip4netns for networking

makisu
● rootless
● daemon-less
● Inspired by Bazel, but addresses lack of RUN
● Similar model to Kaniko

○ Addresses performance for “large images”
○ Doesn’t require nested containers

● https://github.com/uber/makisu

https://github.com/uber/makisu

Bazel
● rootless
● daemon-less
● Ultimate hermetism, reproducibility

○ Because RUN command don't exist

● Can build Java, C++, Android, iOS, Go, and more
● Has https://github.com/bazelbuild/rules_docker for

Docker builds
● Minimum usability

https://github.com/bazelbuild/rules_docker

Google Cloud Build
● Well isolated, rootlessness not so worrisome
● Hermetic with regards to other builds

○ But not the internet

● Reliant on cloud provider’s security model

Fulfilment of
requirements?

35

Build Tools Analysis Summary
● Rootless

○ Everybody, but implementation-specific caveats
abound

● Reproducible
○ No build tools are un-reproducible by design
○ But output is a function of RUN behaviour

● Hermetic
○ Varying degrees, nothing absolute

But Why Choose One: CBI Edition
● Container Builder Interface for Kubernetes
● Provides a vendor-neutral abstraction for building and pushing

container images in Kubernetes
● Supports

○ Docker, BuildKit, Buildah, kaniko, img, Google Cloud Container Builder, Azure Container
Registry Build, OpenShift Source-to-Image...

● https://github.com/containerbuilding/cbi

https://github.com/containerbuilding/cbi

Untrusted Image
Builds?

Untrusted Image Builds
● Are scary
● Will “fix everything”
● Are almost ready

○ Requires user namespace, a hypervisor, or
root emulation

○ Kaniko with gVisor
○ Hosted tooling
○ ...

● BuildKit probably closest
○ Used in OpenFaaS Cloud for

user-supplied builds
○ But still templated, not fully untrusted

● If in doubt: isolate with a VM

The Future
● Rootless runC
● Usernetes
● ShiftFS
● Hypervisor proliferation
● Unikernels?

Exciting Times Ahead

http://explosm.net/shorts/66/the-painting

http://explosm.net/shorts/66/the-painting

https://kubesec.io

github.com/controlplaneio/kubesec

Security risk
Analysis for
Kubernetes
Resources

Now with
100% more
Open Sauce!

https://github.com/controlplaneio/kubesec

kubesec.io - example insecure pod
[
 {
 "object": "Pod/kubesec-demo.default",
 "valid": true,
 "message": "Passed with a score of 1 points",
 "score": 1,
 "scoring": {
 "advise": [
 {
 "selector": "containers[] .securityContext .capabilities .drop",
 "reason": "Reducing kernel capabilities available to a container limits its attack
surface"
 },
 {
 "selector": ".spec .serviceAccountName",
 "reason": "Service accounts restrict Kubernetes API access and should be configured
with least privilege"
 },
 {
 "selector": "containers[] .resources .requests .cpu",
 "reason": "Enforcing CPU requests aids a fair balancing of resources across the
cluster"
 },
 ...

44https://control-plane.io/cnsec

https://control-plane.io/cnsec

Fin!
With thanks to:
● Aleksa Sarai
● Akihiro Suda
● Christian Brauner

References:
● https://rootlesscontaine.rs/
● https://github.com/rootless-containers/rootlesskit
● https://github.com/AkihiroSuda/buildbench
● https://github.com/rootless-containers/slirp4netns
● https://www.slideshare.net/AkihiroSuda/the-state-of-rootle

ss-containers
● https://events.linuxfoundation.org/wp-content/uploads/201

7/11/Comparing-Next-Generation-Container-Image-Buildi
ng-Tools-OSS-Akihiro-Suda.pdf

● https://in-toto.github.io
● https://kernel.ubuntu.com/git/sforshee/linux.git/log/?

h=shiftfs-demo
● https://github.com/rootless-containers/usernetes
● https://nabla-containers.github.io/
● https://github.com/Solo5/solo5

https://twitter.com/lordcyphar
https://twitter.com/_akihirosuda_
https://mobile.twitter.com/brau_ner
https://rootlesscontaine.rs/
https://github.com/rootless-containers/rootlesskit
https://github.com/AkihiroSuda/buildbench
https://github.com/rootless-containers/slirp4netns
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://www.slideshare.net/AkihiroSuda/the-state-of-rootless-containers
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Comparing-Next-Generation-Container-Image-Building-Tools-OSS-Akihiro-Suda.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Comparing-Next-Generation-Container-Image-Building-Tools-OSS-Akihiro-Suda.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Comparing-Next-Generation-Container-Image-Building-Tools-OSS-Akihiro-Suda.pdf
https://in-toto.github.io
https://kernel.ubuntu.com/git/sforshee/linux.git/log/?h=shiftfs-demo
https://kernel.ubuntu.com/git/sforshee/linux.git/log/?h=shiftfs-demo
https://github.com/rootless-containers/usernetes
https://nabla-containers.github.io/
https://github.com/Solo5/solo5

