
Kraken
P2P Docker Image Distribution

Yiran WangEvelyn LiuCody Gibb

Agenda
● What is a docker image and a docker registry
● Common ways to speed up docker pull
● How Uber solves scale problem with Kraken
● Q&A

What is a docker image
● Image layers

○ Regular tar.gz files
○ Each layer = one line in Dockerfile
○ One special layer - image config

■ Defines ENV, USER, etc.

● Image manifest
○ Another json file
○ Contains SHA256 digests of layers

● Image tag
○ Key-value pair, human-readable name to manifest SHA

● You can easily construct a docker image by hand!

What is a docker registry
● A simple web server to store and distribute docker images
● Straightforward REST APIs:

GET /v2/

GET /v2/<name>/tags/list

GET, PUT, DELETE /v2/<name>/manifests/<reference>

GET /v2/<name>/blobs/<digest>

POST /v2/<name>/blobs/uploads

GET, PUT, PATCH, DELETE /v2/<name>/blobs/uploads/<uuid>

What is docker pull
● Pull manifest, find layers not available locally
● Pull tar.gz files
● Decompress them

Speed up docker pull
● Make your docker images homogeneous

○ Use a common base image
○ Dockerfile template, multi-stage build
○ Use a build tool that supports distributed layer cache

■ Makisu from Uber, Kaniko from Google, BuildKit from Docker/Moby

Scale Docker Registry
● Profile first
● Start with a layer of Nginx caches

○ Ideal for bursty workloads
○ Works better with connection limits

● Nginx was not enough for Uber

Uber’s Workload
● Large images

○ 1G average, 10G is becoming common
● Batch jobs

○ Concurrent docker pull - O(10k)
■ Cannot use HDFS

● Host maintenance
○ Reshuffle large number of unique images - O(1k)

■ Cannot add more Nginx
● Care about tail completion time
● Replication across zones - on-prem + cloud zones

○ More expensive and complex as Uber add more zones

P2P

Design Considerations
● Optimize for data center internal usage

○ We control all peers
● Low maintenance

○ No single point of failure
● Handle bursty load

○ O(10k) of same image
○ O(1k) of unique images

Layered Structure
● Easy to understand

○ Just a tree (or trees)
● Fat trees not optimal for big blobs

○ Speed limited by number of
branches

● Hard to maintain topology
● e.g. LAD from Facebook

Central Overseer
● One central component makes all

decisions
○ Schedules P2P transmission of each

4MB data chunk for each node
● Optimal in theory, hard to implement

○ Need to support very high QPS
○ Hard to handle node failure and

slowdown
● e.g. Dragonfly from Alibaba

Random Graph
● A central component makes connection

decisions
● Nodes make transfer decisions
● “Random regular graph”

○ Good connectivity, small diameter
○ Jellyfish, NSDI 2012

● Performant
○ ≈ 80% of max speed in simulation

● Resilient to failures
● Our pick

Kraken

Glossary
● Torrent

○ File broken into multiple pieces, typically 4MB each
○ Pieces transferred independently

● Peer
○ Participant in torrent network
○ Connected peers transfer pieces between each other
○ Peer with 100% of pieces is a seeder

Components
● Agent

○ A peer on every host
○ Implements Docker registry interface

● Origin
○ Dedicated seeders
○ Pluggable storage backend (e.g. S3)
○ Self-healing hash ring

● Tracker
○ Tracks peers and seeders in-memory
○ Self-healing hash ring

Kraken Architecture

Kraken Architecture
Key Features
● Just a caching / distribution layer

○ Should be able to suffer total data loss
and recover

○ All blobs have TTL

● Minimal dependency set
○ DNS

● Content-addressable blobs
○ Blob identifier is hash of blob content
○ Immutable
○ Disadvantage: not user friendly

Kraken Architecture
Peer Discovery
● Tracker returns 50 random peers,

sorted by preference
○ Completed agents (highest)
○ Origins
○ In-progress agents (lowest)

● Agent iterates through the 50 until it
has 10 connections

Blue Origin

Grey Agent

Yellow Agent (downloading)

Green Agent (completed)

Build Index
● Mapping of tag to manifest

SHA256 digest
● No consistency guarantees

○ Client must use unique tags

● Pluggable storage
● Powers image replication

between clusters
○ Simple queue with retry

Kraken Architecture

Global Replication in a Hybrid Cloud Environment
● Kraken cluster in each zone
● Zones in each region share a

storage backend

Security
● Mutual TLS for all communications with central components

○ End to end security
● P2P traffic doesn’t go through TLS (yet)

○ No need to worry about data integrity

Results

Performance in Test
Setup
● 3G image with 2 layers
● 2600 hosts (5200 downloads)
● 0.3GB/s speed limit
● Theoretical max 10s

Result
● P50 10s
● P99 18s
● Max 32sec

○ Outlier (bad host?)

Performance in Production
Blobs distributed per day in busiest zone:
● 1mil 0-100MB blobs
● 600k 100MB-1G blobs
● 100k 1G+ blobs

Peak

● 20k 100MB-1G blobs within 30 sec
○ With old setup, this would’ve caused outage

Optimizations
● Low connection limit

○ Less overhead
● Aggressively disconnect

○ Rebalance network
● Pipelining

○ Maintain a request queue of size n for each connection
○ Less idle time between peers

● Endgame mode
○ For the last few pieces, request from all connected neighbors

Unsuccessful Optimizations
● Prefer peers on the same rack

○ Likely to form a disjoint graph
○ Not needed for over-provisioned network

● Reject incoming connection based on number of mutual connections
○ Haven’t seen issues caused by graph density problems

Takeaways
● Solution not specific to Docker

○ Integrations with other storage systems
● P2P solutions can work within data centers
● Randomization works
● Get something working first before optimization

○ Hard to predict how P2P works without experimentation

Future Plan
● Performance for massive number of tiny files
● Debuggability
● Tighter integration with other registry implementations
● Tighter integration with Kubernetes

○ Layer torrent as a resource?

github.com/uber/kraken

