
Let’s Try Every CRI Runtime
Available for Kubernetes
Phil Estes, Distinguished Engineer
IBM Cloud

Background: OCI

@estesp

OCI specifications

Linux kernel Windows kernel

Container
registries

Container
runtimes

Docker, containerd, cri-o, Kata,
Firecracker, gVisor, Nabla,
Singularity, ...

DockerHub, OSS distribution
project, Cloud registries, JFrog, ...

Background: CRI

@estesp

K8s and CRI Responsibilities

@estesp

Kubernetes Container Runtime

C
R

I

▧ K8s API
▧ Storage
▧ Networking (CNI)
▧ Healthchecks
▧ Placement
▧ Custom resources

▧ Pod container lifecycle
○ Start/stop/delete

▧ Image management
○ Pull/status

▧ Status
▧ Container interactions

○ attach, exec, ports, log

Background: CRI Runtimes

@estesp

kubelet

dockershim

dockerd

kubelet

cri-containerd

containerd

kubelet

cri-o

runc

kubelet

containerd

Kata Firecracker

kubelet --container-runtime {string}
 --container-runtime-endpoint {string}

kubelet

singularity-cri

singularity

Caveats

@estesp

What I don’t have time to cover/demo...

▧ Windows containers & runtimes
▧ rkt (CNCF)
▧ Virtual Kubelet (CRI implementation)
▧ Nabla containers (IBM)

Caveats

@estesp

EXPECTATION

REALITY

Setup

GKE 2-node

Docker Docker

IKS 3-node

containerd containerd containerd

IBM Cloud
BMI

containerd

Firecracker Kata gVisorSingle node
VM

cri-o

IBM Cloud
VSI

cri-o cri-o cri-o

okd 3-node

@estesp

Docker

@estesp

Docker

@estesp

● Most common, original runtime for Kubernetes clusters
● Simplifies tooling for mixed use cluster node (e.g. applications

relying on `docker …` commands “just work”
● Docker Enterprise customers get support and

multi-orchestrator support (swarm + K8s in same cluster)

● “More than enough” engine for Kubernetes
● Concerns over mismatch/lack of release sync between Docker

releases and Kubernetes releases (e.g. “certified” engine version)
● Extra memory/CPU use due to extra layer (docker->ctr->runc)

Containerd

@estesp

Containerd

@estesp

● Used in GKE (Google), IKS (IBM), & Alibaba public clouds
● Significant hardening/testing by nature of use in every Docker

installation (tens of millions of engines)
● Lower memory/CPU use; clean API for extensibility/embedding

● No Docker API socket (tools/vendor support)
● Still growing in maturity/use
● Windows support in flight; soon at parity with Docker engine

CRI-O

@estesp

CRI-O

@estesp

● Used in RH OpenShift; SuSE CaaS; other customers/uses
● “all the runtime Kubernetes needs and nothing more”
● UNIX perspective on separating concerns (client, registry

interactions, build)

● Not consumable apart from RH tools (design choice)
● Use/installation on non-RH distros can be complicated
● Extensibility limited (e.g. proposal from Kata to add containerd

shim API to cri-o)

Sandboxes + RuntimeClass

@estesp

Containerd v2 Shim API

@estesp

Kata Containers

@estesp

Kata Containers

@estesp

● Lightweight virtualization via Intel Clear Containers + Hyper.sh
predecessors

● Implemented via KVM/qemu-based VM isolation
● Works with Docker, cri-o, & containerd

● Solid and maturing project with Intel and others leading;
governance under OpenStack Foundation

● Have added ability to drive Firecracker VMM as well
● Supports ARM, x86_64, AMD64, and IBM p and zSeries

AWS Firecracker

@estesp

AWS Firecracker

@estesp

● Lightweight virtualization via Rust-written VMM, originating
from Google’s crosvm project; target serverless/functions area

● Open Sourced by Amazon in November 2018
● Works standalone via API or via containerd

● cgroup + seccomp “jailer” to tighten down kernel access
● Integrated with containerd via shim and external snapshotter

implementation
● Quickly moving & young project; packaging and delivery still in

flux and requires quite a few manual steps today

gVisor

@estesp

gVisor

@estesp

● A kernel-in-userspace concept from Google; written in Golang
● Used in concert with GKE; for example with Google Cloud Run

for increased isolation/security boundary
● Works standalone (OCI runc replacement) or via containerd

shim implementation

● Reduced syscalls used against “real kernel”; applications run
against gVisor syscall implementations

● Limited functionality; some applications may not work if syscall
not implemented in gVisor

● Syscall overhead, network performance impacted (ref: KVM mode)

Singularity

@estesp

Singularity

@estesp

● An HPC/academic community focused container runtime
● Initially not implementing OCI, now has OCI compliant mode
● To meet HPC use model; not daemon-based, low privilege,

user-oriented runtime (e.g. HPC end user workload scheduling)

● Sylabs, creator of Singularity have recently written a CRI
implementation that drives Singularity runtime

● Uses OCI compliant mode; converts images to SIF, however
● Focused solely on the academic/HPC use case

Nabla

@estesp

Nabla

@estesp

● IBM Research created open source sandbox runtime
● Uses highly limited seccomp profile + unikernel implementation
● Similar to gVisor, but instead of user-mode kernel, uses

unikernel+application approach

● Currently requires building images against special set of
unikernel-linked runtimes (Node, Python, Java, etc.)

● IBM Research pursuing ways to remove this limitation; only
runtime which doesn’t allow generic use of any container image

Summary

@estesp

● OCI specs (runtime, image, distribution) have
enabled a common underpinning for innovation
that maintains interoperability

● CRI has enabled a “pluggable” model for
container runtimes underneath Kubernetes

● Options are growing; most innovation is around
sandboxes and enabled for easier use with
RuntimeClass in K8s

