

KubeCon CloudNativeCon

Europe 2019

Kubernetes the New Research Platform

Bob Killen University of Michigan Lindsey Tulloch Brock University

\$ whoami - Lindsey

Lindsey Tulloch

Undergraduate Student at Brock University

Github: <u>@onyiny-ang</u>

Twitter: <u>@9jaLindsey</u>

Bob Killen

rkillen@umich.edu

Senior Research Cloud Administrator

CNCF Ambassador

Github: <u>@mrbobbytables</u>

Twitter: <u>@mrbobbytables</u>

AMBASSADOR

Kubernetes the New Research Platform

Bob Killen University of Michigan Lindsey Tulloch Brock University

...or a tale of two Research Institutions.

- Increased use of containers...everywhere.
- Moving away from strict "job" style workflows.
- Adoption of data-streaming and in-flight processing.
- Greater use of interactive Science Gateways.
- Dependence on other more persistent services.
- Increasing demand for reproducibility.

Why Kubernetes?

- Kubernetes has become the standard for container orchestration.
- Extremely easy to extend, augment, and integrate with other systems.
- If it works on Kubernetes, it'll work *"anywhere"*.
- No vendor lock-in.
- Very large, active development community.
- Declarative nature aids in improving reproducibility.

 Final Research Project in CS(1 credit)

- Final Research Project in CS(1 credit)
- Bioinformatics

- Final Research Project in CS(1 credit)
- Bioinformatics
- Kubernetes

- Final Research Project in CS(1 credit)
- Bioinformatics
- Kubernetes
- Bioinformatics on Kubernetes!

- Final Research Project in CS(1 credit)
- Bioinformatics
- Kubernetes
- Bioinformatics on Kubernetes!

- Final Research Project in CS(1 credit)
- Bioinformatics
- Kubernetes
- Bioinformatics on Kubernetes!

• on Compute Canada?

Compute Canada Regional and Government Partners

Agence de promotion économiqu du Canada atlantique

Canada's Federated Advanced Research Computing Systems and Services 70+ Institutions Served

WestGrid

Compute Ontario

Calcul Québec

ACENET

Compute Canada

 KubeCon
 CloudNativeCon

 Europe 2019

- Not-for-profit corporation
- Membership includes most of Canada's major research universities
- All Canadian faculty members have access to Compute Canada systems and can sponsor others:
 - students
 - postdocs
 - external collaborators
- No fee for Canadian university faculty
- Reduced fee for federal laboratories and not-for-profit orgs

Active faculty by research area (Jan 1, 2016)

Compute Canada

- Compute and storage resources, data centres
 Team of ~200 experts in utilization of advanced research computing
- 100s of research software packages
- Cloud compute and storage (openstack, owncloud)
- 5-10 Data Centres
- 300,000 cores
- 12 Pflops, 50+ PB

Compute Canada

Researchers drive innovation

• The CC user base is broadening, bringing a broader set of needs.

Tremendous interest in services
 enabling Research Data Management
 (RDM)

KubeCon

Europe 20

- No restrictions on researchers *≠* admin privileges
- ~200 experts ≠ ~200 Kubernetes experts
- ≠ 1 Kubernetes expert. . .
- How is this going to work?????

ATLAS Collaboration

What is ATLAS?

- located on the Large Hadron Collider ring
- detects and records the products of proton collisions in the LHC
- The LHC and the ATLAS detector together form the most powerful microscope ever built
- allow scientists to explore:
 - space and time
 - fundamental laws of nature

ATLAS Collaboration

NBD

ATLAS Collaboration

- ATLAS produces several peta-bytes of data/year
- Tier 2 computing centers perform final analyses (Canadian Universities like UVic)
 UVic-ATLAS group:
 - 25 scientists (students, research associates, technicians, computer experts, engineers and physics professors)

ATLAS + Kubernetes

Where does Kubernetes fit in?

Compute Canada and CERN

FaHiu Lin, Mandy Yang

- Use Kubernetes as a batch system
- Based on SLC6 containers and CVMFS-csi driver
- Proxy passed through K8s secret
- Still room for evolution, eg. allow arbitrary container/options execution, maybe split I/O in 1-core container, improve usage of infrastructure
- Tested at scale for some weeks thanks to CERN IT & Ricardo Rocha

Compute Canada and CERN

With default K8s Scheduler (round robin load balance)

With policy tuning to pack nodes

- Create your own cluster with certain number of nodes (=VMs)
- Kubernetes orchestrates pods (=containers) on top
- Need custom scheduling
- Need to improve/automate node management with infrastructure people
 - Lost half the nodes during the exercise

FaHiu Lin

Thanks to Danika MacDonell

Salmon on Kubernetes 🤝

- Arbutus Cloud Project Access
 - Openstack
 - Maximum Resource Allocation
 - 5 Instances, 16 VCPUs, 36GB RAM, 5 Volumes, 70GB Volume Storage

KubeCon

- 5 Floating IPs, 6 Security Groups
- Deploy Kubernetes with Kubespray, Terraform and Ansible
- Containerize the Salmon Algorithm
- Create Argo workflow

Salmon runs

Salmon Results

The length of the best path is 7549.29 It occurred first in generation 67

This program took 27.14 seconds to complete.

The best path is 30 21 0 48 31 44 18 40 7 8 9 42 32 50 10 51 12 13 46 25 26 27 11 24 3 5 14 4 23 47 36 37 39 38 35 34 33 43 45 15 28 49 19 22 29 1 6 41 20 16 2 17 The average of best paths found in 30 runs was: 7832.7970000000005

KubeCon

CloudNativeCon

Europe 2019 -

The seeds used were: [10, 94, 81, 88, 25, 92, 84, 98, 1, 46, 39, 15, 34, 57, 5, 77, 93, 8, 14, 30, 37, 97, 49, 69, 73, 9, 28, 16, 91, 31]

Future of Kubernetes at CC

- Interest from some staff
- CERN seems to be driving Kubernetes innovation
- Other researchers?
 - Learning curve is steep and time is precious (installing Kubernetes on bare metal just to run your workflow is probably not worth it)
 - Lack of expertise with essential tools (yaml, docker, github)

University of Michigan

- 19 school and colleges
- 45,000 students
- 8,000 faculty
- Largest Public Research Institution within the U.S.
- 1.48 billion in annual research expenditures.

- Advanced Research Computing and Technology Services.
- Streamline the Research Experience.
- Manage all computational Research Needs.
- Provide infrastructure and architecture consultation services.

ARC-TS

- Primary Shared HPC Cluster 27,000 cores.
- Secondary restricted data HPC Cluster.
- Additional clusters with ARM, POWER architectures.
- Data Science (HADOOP + Spark)
- On-prem virtualization services
- Cloud Services.

ARC-TS Needs

- Original adoption of Kubernetes spurred by internal needs to easily host and manage internal services.
 - \circ High availability
 - Hosting artifacts and patch mirrors
 - Source repositories
 - Build Systems
 - Minimal overhead
 - Logging & Metrics

Research Needs

Research Needs

A few services..

Demand shifting from JupyterHub to Kubeflow.

Why Kubeflow?

- <u>Chainer Training</u>
- Hyperparameter Tuning (Katib)
- Istio Integration (for TF Serving)
- Jupyter Notebooks
- ModelDB
- ksonnet
- MPI Training
- MXNet Training

- <u>Pipelines</u>
- <u>PyTorch Training</u>
- Seldon Serving
- NVIDIA TensorRT Inference Server
- TensorFlow Serving
- TensorFlow Batch Predict
- <u>TensorFlow Training (TFJob)</u>
- PyTorch Serving

The New Research Workflow

Sculley et al. - Hidden Technical Debt in Machine Learning Systems

Challenges

 KubeCon

 Europe 2019

- Difficult to integrate with classic multi-user posix infrastructure.
 - Translating API level identity to posix identity.
- Installation on-prem/bare-metal is still challenging.
- No "native" concept of job queue or wall time.
 - \circ $\,$ Up to higher level components to extend and add that functionality.
- Scheduler generally not as expressive as common HPC workload managers such as Slurm or Torque/MOAB.

Current User Distribution

- General Users 70% Want a consumable endpoint.
- Intermediate users 20% Want to be able to update their own deployment (Git) and consume results.
- Advanced users 10% Want direct Kubernetes Access.

Future @ UofM

 KubeCon

 Europe 2019

- Move to Bare Metal.
- Improve integration with institutional infrastructure.
- Investigate Hybrid HPC & Kubernetes.
 - Sylabs SLURM Operator
 - o <u>IBM LSF Operator</u>
- Improved Kubernetes Native HPC
 - <u>Kube-batch</u>
 - o <u>Volcano</u>

Sylabs.io

Outreach and training for both Faculty and Students.

Expected User Distribution

Demand for direct access growing with continued education.

General Users - 70% 30% Intermediate - 20% 40% Advanced - 10% 30%

Expected User Distribution

Demand for direct access growing with continued education.

General Users - 70% - 30% Intermediate - 20% - 40% Advanced - 10% - 30%

Recap:

Kubernetes is great.

Lots of applications to facilitate research workflows.

Growing demand for research that would benefit from Kubernetes.

Suggestions for increasing Kubernetes Adoption

Providers

- Offer Kubernetes for people to consume
- Get involved with the Kube community
- Learn as much as you can
- Provide outreach to researchers and anyone that might need to be ramped up

Researchers

- Engage with research institutions
- Get involved with the Kube community
- Learn as much as you can
- Provide outreach to researchers and anyone that might need to be ramped up

- <u>CNCF Academic Mailing List</u>
- CNCF Academic Slack (<u>#academia</u>)
- Batch Jobs Channel (<u>#kubernetes-batch-jobs</u>)
- Kubernetes Big Data User Group
- Kubernetes <u>Machine Learning Working Group</u>

Credits and Thanks

- ATLAS images were sourced from the CERN document server: <u>https://cds.cern.ch/</u>
- VISPA website: <u>https://www.uvic.ca/science/physics/vispa/research/projects/atlas/</u>
- Compute Canada usage information: https://www.computecanada.ca

