
Koping with Change
What kops Learned Adopting 
etcd3, cluster-api and CRDs
Justin Santa Barbara & Mike Splain



Introductions

justinsb@

kops maintainer
Started the project with a few others
Now @google

mikesplain@

kops maintainer
“New Wave” brings new ideas
Now @sonos



kops release - philosophy

kops releases after kubernetes releases

A kops .0 release is believed to be safe for production

Make sure kops works with new k8s!
Make sure k8s release stable: likely .2 or .3
Make sure the ecosystem is working (CNI providers etc)



kops release - reality

Thanks to: @peterr



kops release - reality

Falling further and further behind

Hard for end-users who wanted to use the latest version

Head of line blocking: e.g. k8s 1.12 met release criteria before k8s 1.11 did

We also felt that we were always struggling to keep up



kops release - the fast-forward

Revised philosophy:

Users like that .0 is production-ready
But ... release alphas & betas earlier to give users a choice

The fast-forward:

Don’t put a lot of features into kops 1.12, 1.13, 1.14.

(Lots) of features will land in 1.15

Cut the branches and start the alpha & beta train rolling!



kops release - the fast-forward

Lemons 🍋:

Slightly confusing releases on github
We have 1.12.1, 1.13 betas, 1.14 alphas etc

So many cherry-picks!

Lemonade:

Landing significant features in master branch

Feels less stressful and release branches feel more stable

(Maybe we will keep the master branch further in the future?)



kops release - the fast-forward 



kops & etcd3

Dealing with External Change:

The Move to etcd3



Moving from etcd2 -> etcd3

Lemons 🍋

etcd2 and etcd3 are completely different systems
etcd2 does not support migration to etcd3

As a kubernetes community, we probably should have pushed back

As a kops developer, I probably should have just sent a PR to do migration

A big source of the increasing time delay

Not really something that is user-visible

kops & etcd3



kops & etcd3

Lemonade

Through the worst of it (🤞) and can start adding “real features” again
Developed etcd-manager, merging with etcdadm to form a community project
Making sure that etcd management is available to all, no longer “just kops”
Etcd-manager adds etcd backups
Etcd-manager allows for resizing etcd clusters
We turned on full etcd-TLS
We isolated the etcd cluster from end-user applications (security)



API aggregation -> CRDs

Backing the wrong horse:

API Aggregation -> CRDs



Systemic change: Aggregated API server -> CRDs

Kops was an early adopter of aggregated apiservers

But … we never got it to a releasable state ... we vendored a lot of k/k libraries, it 
never offered a stable API, was a ton of work to rebase

Aggregated apiservers not being improved; toolkit effectively deprecated

Big push on CRDs to bring them up to parity; CRDs are the future

API Aggregation harder for end users to install

Tight coupling with our docs system etc

API aggregation -> CRDs



API aggregation -> CRDs

Moving to kubebuilder & CRDs

Less & simpler code; a lot less dependencies

controller-runtime is a more stable API, and is intended to be user-facing

ahmet’s doc generation tooling much easier than full api machinery

Much easier to install CRDs on a k8s cluster (no need for an etcd, less invasive 
permissions)

https://github.com/ahmetb/gen-crd-api-reference-docs


Cluster-API

Getting things too right:

Cluster-API



Cluster-API



Cluster API

Lemons 🍋

It can be even harder when something comes along that is “closer to home”

kops InstanceGroups are very similar to cluster-api MachineDeployments

kops InstanceGroups are (today) richer than MachineDeployments



Cluster API

We can “shim” InstanceGroups to MachineDeployments

When an InstanceGroup CRD is created, we create an owned MachineDeployment

Lets users choose: use either InstanceGroups or MachineDeployments directly

Still early days for cluster-api, we’ll see if wrapping MachineDeployments becomes 
common



Cluster API

Lemonade:

cluster-api has a pre-built server-side model

People porting cluster-api to lots of cloud providers

MachineSet is an object we are missing in kops

Better integration with autoscaler etc



Bundles & Operators

Be the change:

Addon Bundles & Operators



Addons - Bundles & Operators

Bundles of Addons

The next area - being developed (even more) actively

Currently kops addon manifests & versions are baked into a kops release

Bundles: controlled releases of addons without doing a kops release



Addons - Bundles & Operators

Addon operators

Controller: Lets us check the health / status of addons long after cluster-installation

Can orchestrate complicated updates

Being developed in sig-cluster-lifecycle addon subproject



kops as components

Integrated kops kops cli

etcdadm

Addon bundles/operators

cluster-api

CRDs & kubebuilder

nodeup

PAST FUTURE



What we learned!

Summary

Kubernetes is changing very rapidly
Often for the better, but with some detours
Some changes are just work
Some changes duplicate something you’ve been doing - maybe provide a shim

Embrace new contributors - they are more in tune with the project now

Consider “jumping ahead” if you’ve been falling behind … doing some “no feature” 
releases



Thank you / Join us!

Thank you to all our contributors, in github, slack or elsewhere!

Join us on Slack:
#kops-users

Or for development:
#kops-dev

Office hours:
Odd weeks
Friday 12 noon EDT / 9 AM PDT / 18:00 CEST

Deep dive: Kops
Tomorrow, Thursday, May 23 - 11:55 - 12:30





Demo

Demo of k115 branch with cluster-api integration, CRDs and bundles?


