Spotify

6 Spotify:

How Spotify Accidentally
Deleted All Its Kube Clusters
with No User Impact

David Xia @davidxia




Spotify

About Myself and Spotify

e infrastructure engineer
e music streaming company with 100M+ subscribers and 200M+ MAU

e 1K+ developers continuously deploying code to 10K+ VMs



Spotify




Spotify

Google Cloud Platform
GCP



Spotify

Google Kubernetes Engine
GKE



Spotify

Context on Spotify's Compute Environment

3 production clusters



Spotify Project




Spotify KubeCon Europe 2019 2019-05-22




Spotify KubeCon Europe 2019 2019-05-22




Spotify KubeCon Europe 2019 2019-05-22




Spotify KubeCon Europe 2019 2019-05-22




Spotify KubeCon Europe 2019 2019-05-22




Spotify

That Moment
When You Realize




Spotify

That Moment
When You Realize

| deleted a 50-node production
cluster running dozens of workloads.




Spotify

How Do | Make It Stop?

You don't.



Spotify

Cluster Restoration

e took 3.25 hours
e bugs In cluster creation scripts
e incomplete and incorrect documentation

e cluster creation process wasn't resumable, all or nothing



Spotify

A Month Later

e trying to prevent accidental
cluster deletions by coditying
them

e unknowingly modified global state
during review builds

e two PRs merged out of order




Spotify

A Month Later

e trying to prevent accidental
cluster deletions by codifying
them

e unknowingly modified global state
during review builds

e two PRs merged out of order




Spotify

Can't Get Any Worse, Right?

e we try to recreate the cluster by
merging the remaining PR

e cluster creation fails from lack of
permissions

e we grant enough but different
permissions to make it work

e caused Terraform's view of the
clusters to change



Spotify

Can't Get Any Worse, Right?

e we try to recreate the cluster by
merging the remaining PR

e cluster creation fails from lack of
permissions

e we grant enough but different
permissions to make it work

e caused Terraform's view of the
clusters to change



Spotify

Developer Impact

e one team had to create more non-K8s VMs
e my team had to update all the places we had hardcorded the old master IP

e everyone had to refresh cluster credentials






What We Did Right

e we planned for failure
e we migrated large scale, complex infrastructure gradually

e we have a culture of learning



Spotify

How Did We Plan for Failure?

1. we recommended teams only migrate services partially to K8s
2. the way we registered services running on K8s

3. resulting failover to non-K8s instances



Spotify

Partial K8s Migration on Per-Service Level

e K8s usage at Spotify was marked as beta at the time

e we recommended teams only migrate some but not all of each service's
Instances to K8s

e we continue work on integrations, reliability, managing multiple clusters



Spotify

The Saving Grace of Registering Services the non-K8s Way

e our Internal service discovery system uses Pod IPs
e we don't use the K8s Service IP
e we polls Services' Endpoints and update service discovery

e our team was paged to make service discovery no longer poll deleted cluster



Spotify

Failover to Non-K8s Instances

e service discovery system was restarted
e K8s Pods removed from service discovery

e clients only got a list of non-K8s instances



Spotify

Best Practices

e backed up our clusters

e codified our infrastructure

e performed disaster recovery tests

e made team members practice disaster scenarios




Spotify

Backed Up Our Clusters

e our cluster backups were essential
e we had already tested restoring from these

e if you have never restored from backups, you don't have backups



Spotify

Codified Our Infrastructure

e introduced new tools gradually

e standardized the workflow and change management of infra code
e added linters and validators

e added the output of the dry run as a comment to the pull request
e required status checks to pass before merging

e required feature branch to be up to date

e required approving reviews

e failed review builds if certain keywords in the dry run like "destroy"”



Spotify

Performed Disaster Recovery Tests

e disasters will happen whether you plan for them or not, so plan for them
e scheduled them in advance

e announced widely to operators and users

e tested different failure conditions

e recorded and fixed issues quickly



Spotify

Practice Makes Perfect

e it took me 3.25 hrs to restore cluster | deleted along with all its integrations
e second cluster deletion incident lasted from 8PM to 5AM

e NOwW we can restore larger clusters in 1 hour



KubeCon




Spotify

What We Did Right

e we planned for failure
e we are migrating large scale, complex infrastructure gradually

e we have a culture of learning



Spotify

Next Steps for K8s at Spotify

e told service owners their services can now be entirely on K8s
e manage configuration and workload distribution across many clusters

e create redundancy by deploying services to multiple clusters in a region



Spotify

Thank you!

e Spotify:

spotifyjobs.com
David Xia @davidxia



