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About Myself and Spotify

e infrastructure engineer
e music streaming company with 100M+ subscribers and 200M+ MAU

e 1K+ developers continuously deploying code to 10K+ VMs
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Google Cloud Platform
GCP
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Google Kubernetes Engine
GKE
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Context on Spotify's Compute Environment

3 production clusters
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That Moment
When You Realize
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That Moment
When You Realize

| deleted a 50-node production
cluster running dozens of workloads.
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How Do | Make It Stop?

You don't.
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Cluster Restoration

e took 3.25 hours
e bugs In cluster creation scripts
e incomplete and incorrect documentation

e cluster creation process wasn't resumable, all or nothing
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A Month Later

e trying to prevent accidental
cluster deletions by coditying
them

e unknowingly modified global state
during review builds

e two PRs merged out of order
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Can't Get Any Worse, Right?

e we try to recreate the cluster by
merging the remaining PR

e cluster creation fails from lack of
permissions

e we grant enough but different
permissions to make it work

e caused Terraform's view of the
clusters to change
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Developer Impact

e one team had to create more non-K8s VMs
e my team had to update all the places we had hardcorded the old master IP

e everyone had to refresh cluster credentials






What We Did Right

e we planned for failure
e we migrated large scale, complex infrastructure gradually

e we have a culture of learning
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How Did We Plan for Failure?

1. we recommended teams only migrate services partially to K8s
2. the way we registered services running on K8s

3. resulting failover to non-K8s instances
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Partial K8s Migration on Per-Service Level

e K8s usage at Spotify was marked as beta at the time

e we recommended teams only migrate some but not all of each service's
Instances to K8s

e we continue work on integrations, reliability, managing multiple clusters
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The Saving Grace of Registering Services the non-K8s Way

e our Internal service discovery system uses Pod IPs
e we don't use the K8s Service IP
e we polls Services' Endpoints and update service discovery

e our team was paged to make service discovery no longer poll deleted cluster
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Failover to Non-K8s Instances

e service discovery system was restarted
e K8s Pods removed from service discovery

e clients only got a list of non-K8s instances
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Best Practices

e backed up our clusters

e codified our infrastructure

e performed disaster recovery tests

e made team members practice disaster scenarios
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Backed Up Our Clusters

e our cluster backups were essential
e we had already tested restoring from these

e if you have never restored from backups, you don't have backups
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Codified Our Infrastructure

e introduced new tools gradually

e standardized the workflow and change management of infra code
e added linters and validators

e added the output of the dry run as a comment to the pull request
e required status checks to pass before merging

e required feature branch to be up to date

e required approving reviews

e failed review builds if certain keywords in the dry run like "destroy"”
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Performed Disaster Recovery Tests

e disasters will happen whether you plan for them or not, so plan for them
e scheduled them in advance

e announced widely to operators and users

e tested different failure conditions

e recorded and fixed issues quickly
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Practice Makes Perfect

e it took me 3.25 hrs to restore cluster | deleted along with all its integrations
e second cluster deletion incident lasted from 8PM to 5AM

e NOwW we can restore larger clusters in 1 hour
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What We Did Right

e we planned for failure
e we are migrating large scale, complex infrastructure gradually

e we have a culture of learning
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Next Steps for K8s at Spotify

e told service owners their services can now be entirely on K8s
e manage configuration and workload distribution across many clusters

e create redundancy by deploying services to multiple clusters in a region
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Thank you!

e Spotify:

spotifyjobs.com
David Xia @davidxia



