
Kubernetes
Policy WG
Session

KubeCon Barcelona 2019

Howard Huang, Huawei
Erica Von Beulow, RedHat

WG Overview

● Kubernetes The Policy Framework
● Policies impose permissions, quotas, constraints, requirements, defaults, etc.

on other resources
● What patterns should we adopt going forward?

○ Built in vs extensions
○ Extension using DSLs vs APIs
○ Domain-specific (scheduling policy) vs resource-specific (pod restriction)
○ Conventions across policy types: whitelists, blacklists, profiles, defaults, etc.
○ Cluster-level vs namespace-level
○ Policies vs component flags

● How do we provide policy defaults?

Motivation (from Brian G)

● Policy are needed and designed all over the place in kubernetes
● Policy description are domain specific in nature:

○ Not only in the sense Brian G meant (Kubernetes’ domain), but also in a larger context of
usage (audit, security, storage, network, AI...), vertical adoption (finance, telco, pharma,...),
languages, ...

○ Usually out of scope for WG description

● Policy semantic and control mechanism is universal
○ Policy semantic: the underlying description of the policy description
○ Policy control mechanism: life cycle of policy itself, and life cycle of elements defined in policy

Motivation (from ourselves)

Overview (SIG Relationship)
Policy WG

Admission/Authorization/
Attestation

Scheduling

Storage

Network

Domain Specific Acc

sig-auth

sig-sched

sig-storage

sig-network

sig-node
RM WG

sig-arch
Multitenancy WG

WG Work Items

Policy WG Work Items Overview
● Running list of interested items

○ Scheduling Policy Proposal (pending)
○ Metadata Policy: (pending)
○ Multi-tenancy: https://github.com/kubernetes-sigs/multi-tenancy
○ Gatekeeper:

https://docs.google.com/document/d/1A1-Q-1OMw3QODs1wT6eqfLTagcGmgzAJAjJihiO3T4
8/edit#heading=h.rosd3aktkpys

● New Area Exploration
○ Policy as type system
○ Policy formal verification

● Case Studies

https://github.com/kubernetes-sigs/multi-tenancy
https://docs.google.com/document/d/1A1-Q-1OMw3QODs1wT6eqfLTagcGmgzAJAjJihiO3T48/edit#heading=h.rosd3aktkpys
https://docs.google.com/document/d/1A1-Q-1OMw3QODs1wT6eqfLTagcGmgzAJAjJihiO3T48/edit#heading=h.rosd3aktkpys

WG Running List 2019 - Multi-Tenancy Policy

WG Running List 2019 - Multi-Tenancy Policy
● Self-service Namespace Creation

○ “kubectl create ns” by tenant admins without going over an
indirect way through Tenant CRD and Tenant CRD controller.

● Cluster-scoped Resources
○ the tenant admins may have permissions to create cluster scoped

resources like PodSecurityPolicy
● In a nutshell, help solving the CR population problem in

the context of multi-tenancy

WG Running List 2019 - Multi-Tenancy Policy
● Proposal : Policy Engine -> Policy Compiler -> Tenant

Policy object -> Resource Population (ns, podsec,
network, rbac, ….)

● Example : OPA -> Gatekeeper (Tenant Policy Object ->
Resource Population) -> General Kubernetes Cluster

● Problem: how to define the constraint for a population
(when do we hit a wall and stop)

WG Running List 2019 - OPA Gatekeeper Project

WG Running List 2019 - OPA Gatekeeper Project

WG Running List 2019 - OPA Gatekeeper Project

WG New Area Exploration - policy formal verification
● Background Knowledge

○ SMT can be thought of as a form of the constraint satisfaction
problem and thus a certain formalized approach to constraint
programming

○ an SMT instance is a formula in first-order logic, where some function
and predicate symbols have additional interpretations, and SMT is
the problem of determining whether such a formula is satisfiable

○ A predicate is a binary-valued function of non-binary variables.
Example predicates include linear inequalities (e.g.) or
equalities involving uninterpreted terms and function symbols (e.g:

WG New Area Exploration - policy formal verification

WG New Area Exploration - policy formal verification
Construct a policy symbolic graph for each kubernetes domain

networking Multi-tenancy Security

WG New Area Exploration - policy formal verification
● Possible new open source project for policy fv starting

this year either under the banner of kube wg-policy or
cncf sig-security

● Collaboration involving AWS, Styra, and many others in
the community

● Keep an eye on the slack channel or ping us via email
(zhipengh512@gmail, evb@redhat.com) if you are
also interested

WG New Area Exploration - policy as type system

Together, these concepts

1. Identity
2. Outcome Set
3. State
4. Rules

enable us to define a policy in a way that is consistent and automatable.

WG New Area Exploration - policy as type system

Proposed long term vision:

1- Strong type system for Kubernetes resources

- Better specifications and validation with a formal type system
- Algebraic types:

- Allows you to define more complex resource types (e.g.
“pod”+”configmap”, union types)

- Compositional transformations and admission chains

WG New Area Exploration - policy as type system

Proposed long term vision:

2- Policy Hooks at key points

- Lifecycle: Admission, deletion
- Network traffic in and pod of pods
- Pod start up and down
- API calls - webhook not quite enough

WG New Area Exploration - policy as type system

Proposed long term vision:

3- Capabilities

- Pod “leases”
- Delegation, access control

WG New Area Exploration - policy as type system

Proposed long term vision:

4- Kubernetes as the “now”

- Flattened view with explicit consistency bands
- Pipeline of transformations to facilitate managing

clusters
- Favor “compiled” over runtime interpretation

WG New Area Exploration - policy as type system
● Everything in namespaces

○ Doesn’t have to be the same “namespace”
■ e.g. “organization” concept over users
■ Needs to be - every resource is in one and only one

namespace (or zone or class or whatever)
● Immutable labels or annotations

○ Keep context, allow chains of validations
● Improved ownership

○ Cross-namespace
○ “Object pairs” or other way to easily tie lifecycles together

CNCF Wide Collaboration

CNCF Security SIG - Cloud Native White Paper

Semantic + Control = Architecture

Compiler

Formal
Verification

Engine
Policy Engine

Cloud Native Control Plane (Istio, Kubernetes, Mesos, Docker, ...)

Cloud Native Data Plane (Cilium, Notary, Envoy, SPIRE, ...)

Unified Policy Format

Contact and Contribute

WG Facts
● Feel free to join the weekly meeting or leave a note on

the meeting minute doc (https://goo.gl/auTfy2) if you
have more interesting topics or projects could be used
for case studies !

● Find us at #wg-policy on slack, propose any new
interesting idea like we talked here for futuristic open
source study !

● Add label wg-policy for your KEPs if it is policy related !

https://goo.gl/auTfy2

Thank you !

Q & A

