
How We Used Kubernetes to Host a
CTF Competition
Liron Levin
Ariel Zelivansky

Who we are
● Ariel Zelivansky / Security Research Leader

○ Vulnerability research on open source projects, CVEs & blog
○ Best security practices for Twistlock platform

● Liron Levin / Twistlock Chief Architect
○ Ph.D. on distributed network algorithms BGU
○ Designs and builds Twistlock platform

Agenda
1. What is CTF + the challenge
2. Why K8S/Cloud
3. Infrastructure/Engineering
4. Securing the infrastructure
5. Results
6. Key takeouts

What’s a CTF?
● “Capture the flag” challenge

○ Jepoardy style/Attack defense/Wargames (OTW)

● Good for education, conventions

Twistlock CTF - Why?

● Good PR among security professional
● Find good researchers
● Making challenges forces us to learn a lot
● Fun!

Advertised!

● Reddit for CTFs (securityCTF)
● Local news sites
● Facebook/Whatsapp groups

https://www.reddit.com/r/securityCTF/

Making it interesting
● Wargame style
● Same machine - multiple challenges!

○ Different users, need to escalate permissions
○ Flags hidden as files

● Different challenge subjects - web/scripting, reverse-engineering, Linux
internals, modern exploitation…

The challenge

The challenge

The challenge

Web server

Client db server
Networking/IPC

The challenge

Web server

Client db server
Networking/IPC

suid root

The challenge

Web server

Client db server
Networking/IPC

suid root

The challenge

Web server

The challenge

Web server

Client db server

The challenge

Web server

Client db server

Why cloud?

● Machines hosted on our side

○ Impossible to cheat (by reading memory/docker exec)

○ Control and monitor all instances

● Learning opportunity for cloud security

Why Kubernetes?

● Easy to scale
● Easy to update (hotfix)
● Easy configuration management (configuration as code)
● Good baseline security

1. Simple (but not simplistic)
2. Cheap / Cost effective (time + resources)
3. Reproducible and partially automated*
4. Secure* by default

Engineering requirements

Solution Register

Virus.expressT19challenge.com

Solution

Virus.expressT19challenge.com

Cookie

Solution Play

Virus.expressT19challenge.com

1. Statically allocate all resources -

Possible solutions

Static

Virus.expressT19challenge.com

Register

1. Statically allocate all resources -
Expensive, does not scale

Possible solutions

1. Statically allocate all resources -
Expensive, does not scale

2. On demand allocate pods + services -

Possible solutions

Dynamic Register

Virus.expressT19challenge.com

Dynamic

Virus.expressT19challenge.com

Cookie

1. Statically allocate all resources -
Expensive, non-deterministic

2. On demand allocate pods + services -
Complex, require nginx change + k8s access

Possible solutions

1. Statically allocate all resources -
Expensive, non-deterministic

2. On demand allocate pods + services -
Complex, require nginx change + k8s access

3. Hybrid - statically allocate services + dynamically allocate pods

Possible solutions

Pre-allocated service IPs

Predefined service subnet (--service-cidr=10.245.0.0/16)
Allocate all services (>k before) before creating pods

kind: Service
apiVersion: v1
metadata:
 name: ctf-1
spec:
 clusterIP: 10.245.0.3
 selector:
 app: ctf-1
 ports:
 - protocol: TCP
 port: 13337
 targetPort: 13337

How it works

ID Cluster-ip

eba871ba9e58739c687e084a68
f34500

10.245.0.3 ...

76846a1eb5ec91e974831af1ba
a9e76d

10.245.0.4 ...

d88ec62c1ea5b46df814f122a4
641a94

10.245.0.5 ...

... 10.245.0.5

... ...

The load-balancer

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-config
data:
 nginx.conf: |
 http {
 limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
 map $cookie_t19userid $backend {
 default '';

 eba871ba9e58739c687e084a68f34500 http://10.245.0.3:13337;
 76846a1eb5ec91e974831af1baa9e76d http://10.245.0.4:13337;
 d88ec62c1ea5b46df814f122a4641a94 http://10.245.0.5:13337;

On demand* pod allocation

Create pods on demand (or in batches)

kind: Deployment
metadata:
 name: ctf-1
 labels:
 app: ctf-1
spec:
 spec:
 containers:
 - name: ctf-1
 image: twistlock/t19
 ports:
 - containerPort: 13337

Freeing unused resources

● Each CTF app takes ~20mb
● We expected ~2k registrations ~40GB RAM
● How do you detect (and shutdown) idle instance?

○ /var/log/nginx/access.log

Security challenges - WHAT IF

● Too many registration (resource exhaustion) - should delete?
● One pod interfere other pods (DOS)
● Attacker breaks out of the pod (container breakout)
● Compromise network assests
● Compromised the cluster (game over)

Too many registration (should delete?)

● Entry barriers: base64
● Doomsday solution: Captcha

Local resource exhaustion

● CPU/memory exhaustion
 (deliberate or accidental)

● Resource abuse $$$ (e.g. cryptomining)

Local resource exhaustion - solution

● Pod security policy
apiVersion: v1
kind: Pod
metadata:
 name: ctf
spec:
 containers:
 - name: ctf-app
 image: twistlock/t19
 resources:
 requests:
 memory: "30Mi"
 cpu: "50m"
 limits:
 memory: "50Mi"
 cpu: "50m"

Host compromised

● Misconfiguration (host mount/secrets)

● CVE-2019-5736 -
Execution of malicious containers allows for container escape and access to
host filesystem

● Classic container - No mounts/secrets - simple app
● Default container profile (no additional LINUX capabilities + seccomp)
● Container optimized OS - read only root partition (CVE-2019-5736 mitigation)
● [Optional] Userns
● [Optional] Additional sandbox - Gvisor

Container breakout - “solution”

Cluster takeover

● Capturing all the flags in BSidesSF CTF by pwning our infrastructure
https://hackernoon.com/capturing-all-the-flags-in-bsidessf-ctf-by-pwning-our-infrastructure-3570b99b4
dd0

● SSRF in Exchange leads to ROOT access in all instances

https://hackerone.com/reports/341876
● Access cloud services ($$) or steal sensitive data (images)

Cluster takeover - mitigations

● Isolated environment (project)

● RBAC

● automountServiceAccountToken: false

● Metadata concealment

● Network policies

Network policy
kind: NetworkPolicy
spec:
 podSelector:
 matchLabels:
 app: t19
 policyTypes:
 - Ingress
 - Egress
 egress:
 - to:
 - ipBlock:
 cidr: 0.0.0.0/0
 except:
 - 169.254.169.254/32
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: t19-nginx

Challenge conclusion

● 8 participants solved
○ 6 found 4th flag

● Excellent write-ups with solutions
● Links and finalists
● Challenge coins molded

https://www.twistlock.com/labs-blog/t19-challenge-twistlock-labs-first-security-challenge-summary-solutions/

Try to solve?

● http://t19challenge.com/

● Follow the instructions to run

● Don’t cheat and good luck!

● See you in T20?

http://t19challenge.com/

Key takeouts

● Good engineering == cost saving
● Good security …
● Kubernetes is a great platform to host a live CTF

○ Little effort to deploy once built
○ Easy to monitor
○ Easy to scale
○ Hotfix on pods

● Future ideas
○ Networking CTF - more than one container in pod, need to hack via network
○ Attack/defense CTF on Kubernetes

