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Who we are
● Ariel Zelivansky / Security Research Lead

○ Vulnerability research on open source projects, CVEs & blog
○ Best security practices for Twistlock platform

● Liron Levin / Chief Architect
○ Ph.D. on distributed network algorithms BGU
○ Designs and builds Twistlock platform
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What’s a CTF?
● “Capture the flag” challenge

○ Jeopardy style/Attack defense/Wargames (OTW)

● Good for education, conventions



Twistlock CTF - Why?

● Find good security researchers
● Creating challenges forces us to learn a lot
● Fun!



Advertised!

● Reddit for CTFs (securityCTF)
● Local news sites
● Facebook/Whatsapp groups

https://www.reddit.com/r/securityCTF/


Advertised!



Making it interesting
● Wargame style
● Same machine - multiple challenges!

○ Different users, need to escalate permissions
○ Flags hidden as files

● Different challenge subjects - web/scripting, reverse-engineering, Linux 
internals, modern exploitation…
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Why cloud?

● Machines hosted on our side

○ Impossible to cheat (by reading memory/docker exec)

○ Control and monitor all instances

● Researching cloud attack patterns



Why Kubernetes?

● Easy to scale
● Easy to update (hotfix)
● Easy configuration management
● Good baseline security



1. Simple (but not simplistic)
2. Cheap / Cost effective (time + resources) 
3. Reproducible and partially automated*
4. Secure* by default  

Engineering requirements
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1. Statically allocate all resources -
Expensive, non-deterministic

2. On demand allocate pods + services -
Complex, require nginx change + k8s access

3. Hybrid - statically allocate services + dynamically allocate pods

Infrastructure setup



Pre-allocated service IPs 

Predefined service subnet ( --service-cidr=10.245.0.0/16) 
Create all services (>k before) before creating pods

kind: Service
apiVersion: v1
metadata:
  name: ctf-1
spec:
  clusterIP: 10.245.0.3
  selector:
    app: ctf-1
  ports:
  - protocol: TCP
    port: 13337
    targetPort: 13337
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Static storage and load balancer
Cookie Cluster-ip

eba871…. 10.245.0.3

76846a... 10.245.0.4

d88ec6... 10.245.0.5

... 10.245.0.5

... ...

apiVersion: v1
kind: ConfigMap
metadata:
  name: nginx-config
data:
  nginx.conf: |
    http {
    limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
    map $cookie_t19userid $backend {
    default '';

    eba871ba9e58739c687e084a68f34500 http://10.245.0.3:13337;
    76846a1eb5ec91e974831af1baa9e76d http://10.245.0.4:13337;
    d88ec62c1ea5b46df814f122a4641a94 http://10.245.0.5:13337;
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On demand* pod allocation

Create pods on demand (or in batches)

kind: Deployment
metadata:
  name: ctf-1
  labels:
    app: ctf-1
spec:  
    spec:
      containers:
      - name: ctf-1
        image: twistlock/t19
        ports:
        - containerPort: 13337
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Security challenges
Risk Causes

Local resource exhaustion Crypto miners
CPU/memory exhaustion (accident)

Attacker breaks out of the container Misconfiguration (host mount/secrets)
Vulnerabilities

Cluster compromised - Steal sensitive data 
(images)

API compromised (k8s/cloud) 
Example 1 (Bsides CTF)
Example 2 (SSRF to takeover)

https://hackernoon.com/capturing-all-the-flags-in-bsidessf-ctf-by-pwning-our-infrastructure-3570b99b4dd0
https://hackerone.com/reports/341876


Local resource exhaustion - mitigations  

● Block outgoing ports used for crypto miners (30303,8545,18080,18081…) 

● Pod security policy (cgroups)
apiVersion: v1
kind: Pod
metadata:
  name: ctf
spec:
  containers:
  - name: ctf-app
    image: twistlock/t19
    resources:
      requests:
        memory: "30Mi"
        cpu: "50m"
      limits:
        memory: "50Mi"
        cpu: "50m"



● Classic container - No mounts/secrets - simple app
● Default container profile (no additional LINUX capabilities + seccomp)
● Container optimized OS - read only root partition (CVE-2019-5736 mitigation)
● User namespaces*

Container breakout - mitigations



Cluster takeover - mitigations

● Completely isolated environment

● automountServiceAccountToken: false

● Metadata concealment / Network policies



Network policy
kind: NetworkPolicy
spec:
  podSelector:
    matchLabels:
      app: t19
  policyTypes:
  - Ingress
  - Egress
  egress:
  - to:
    - ipBlock:
        cidr: 0.0.0.0/0
        except:
        - 169.254.169.254/32
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: t19-nginx



Challenge conclusion

● 8 participants solved
○ 6 found 4th flag

● Excellent write-ups with solutions
●  Links and finalists
● Challenge coins molded

https://www.twistlock.com/labs-blog/t19-challenge-twistlock-labs-first-security-challenge-summary-solutions/


Key takeouts

● Good engineering == cost saving 

● Good security

● Kubernetes is a great platform to host a live CTF



Try to solve?

● http://t19challenge.com/

● Follow the instructions to run

● Don’t cheat and good luck!

● See you in T20?

http://t19challenge.com/


Thank you!
Twistlock.com/labs
@TwistlockLabs


