
How We Used Kubernetes to Host a
CTF Competition
Liron Levin
Ariel Zelivansky

Who we are
● Ariel Zelivansky / Security Research Lead

○ Vulnerability research on open source projects, CVEs & blog
○ Best security practices for Twistlock platform

● Liron Levin / Chief Architect
○ Ph.D. on distributed network algorithms BGU
○ Designs and builds Twistlock platform

Agenda
1. What is a CTF
2. Why K8S
3. Engineering
4. Securing the infrastructure
5. Results
6. Key takeouts

What’s a CTF?
● “Capture the flag” challenge

○ Jeopardy style/Attack defense/Wargames (OTW)

● Good for education, conventions

Twistlock CTF - Why?

● Find good security researchers
● Creating challenges forces us to learn a lot
● Fun!

Advertised!

● Reddit for CTFs (securityCTF)
● Local news sites
● Facebook/Whatsapp groups

https://www.reddit.com/r/securityCTF/

Advertised!

Making it interesting
● Wargame style
● Same machine - multiple challenges!

○ Different users, need to escalate permissions
○ Flags hidden as files

● Different challenge subjects - web/scripting, reverse-engineering, Linux
internals, modern exploitation…

The challenge

The challenge

The challenge

Web server

The challenge

Web server

Client db server
Networking/IPC

The challenge

Web server

Client db server
Networking/IPC

suid root

The challenge

Web server

Client db server
Networking/IPC

suid root

The challenge

Web server

Client db server

The challenge

Web server

Client db server

Why cloud?

● Machines hosted on our side

○ Impossible to cheat (by reading memory/docker exec)

○ Control and monitor all instances

● Researching cloud attack patterns

Why Kubernetes?

● Easy to scale
● Easy to update (hotfix)
● Easy configuration management
● Good baseline security

1. Simple (but not simplistic)
2. Cheap / Cost effective (time + resources)
3. Reproducible and partially automated*
4. Secure* by default

Engineering requirements

Overview Register

Virus.expressT19challenge.com

Overview Register

Virus.expressT19challenge.com

Overview

Virus.expressT19challenge.com

Cookie

Overview Cookie

Virus.expressT19challenge.com

Overview Cookie

Virus.expressT19challenge.com

Overview Cookie

Virus.expressT19challenge.com

10.245.0.3 10.245.0.4 10.245.0.5

Overview Cookie

Virus.expressT19challenge.com

10.245.0.4

1. Statically allocate all resources -
Expensive, non-deterministic

2. On demand allocate pods + services -
Complex, require nginx change + k8s access

3. Hybrid - statically allocate services + dynamically allocate pods

Infrastructure setup

Pre-allocated service IPs

Predefined service subnet (--service-cidr=10.245.0.0/16)
Create all services (>k before) before creating pods

kind: Service
apiVersion: v1
metadata:
 name: ctf-1
spec:
 clusterIP: 10.245.0.3
 selector:
 app: ctf-1
 ports:
 - protocol: TCP
 port: 13337
 targetPort: 13337

Pre-allocated service IPs

Predefined service subnet (--service-cidr=10.245.0.0/16)
Create all services (>k before) before creating pods

kind: Service
apiVersion: v1
metadata:
 name: ctf-1
spec:
 clusterIP: 10.245.0.3
 selector:
 app: ctf-1
 ports:
 - protocol: TCP
 port: 13337
 targetPort: 13337

Pre-allocated service IPs

Predefined service subnet (--service-cidr=10.245.0.0/16)
Create all services (>k before) before creating pods

kind: Service
apiVersion: v1
metadata:
 name: ctf-1
spec:
 clusterIP: 10.245.0.3
 selector:
 app: ctf-1
 ports:
 - protocol: TCP
 port: 13337
 targetPort: 13337

Static storage and load balancer
Cookie Cluster-ip

eba871…. 10.245.0.3

76846a... 10.245.0.4

d88ec6... 10.245.0.5

... 10.245.0.5

... ...

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-config
data:
 nginx.conf: |
 http {
 limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
 map $cookie_t19userid $backend {
 default '';

 eba871ba9e58739c687e084a68f34500 http://10.245.0.3:13337;
 76846a1eb5ec91e974831af1baa9e76d http://10.245.0.4:13337;
 d88ec62c1ea5b46df814f122a4641a94 http://10.245.0.5:13337;

Static storage and load balancer
Cookie Cluster-ip

eba871…. 10.245.0.3

76846a... 10.245.0.4

d88ec6... 10.245.0.5

... 10.245.0.5

... ...

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-config
data:
 nginx.conf: |
 http {
 limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
 map $cookie_t19userid $backend {
 default '';

 eba871ba9e58739c687e084a68f34500 http://10.245.0.3:13337;
 76846a1eb5ec91e974831af1baa9e76d http://10.245.0.4:13337;
 d88ec62c1ea5b46df814f122a4641a94 http://10.245.0.5:13337;

On demand* pod allocation

Create pods on demand (or in batches)

kind: Deployment
metadata:
 name: ctf-1
 labels:
 app: ctf-1
spec:
 spec:
 containers:
 - name: ctf-1
 image: twistlock/t19
 ports:
 - containerPort: 13337

On demand* pod allocation

Create pods on demand (or in batches)

kind: Deployment
metadata:
 name: ctf-1
 labels:
 app: ctf-1
spec:
 spec:
 containers:
 - name: ctf-1
 image: twistlock/t19
 ports:
 - containerPort: 13337

Security challenges
Risk Causes

Local resource exhaustion Crypto miners
CPU/memory exhaustion (accident)

Attacker breaks out of the container Misconfiguration (host mount/secrets)
Vulnerabilities

Cluster compromised - Steal sensitive data
(images)

API compromised (k8s/cloud)
Example 1 (Bsides CTF)
Example 2 (SSRF to takeover)

https://hackernoon.com/capturing-all-the-flags-in-bsidessf-ctf-by-pwning-our-infrastructure-3570b99b4dd0
https://hackerone.com/reports/341876

Local resource exhaustion - mitigations

● Block outgoing ports used for crypto miners (30303,8545,18080,18081…)

● Pod security policy (cgroups)
apiVersion: v1
kind: Pod
metadata:
 name: ctf
spec:
 containers:
 - name: ctf-app
 image: twistlock/t19
 resources:
 requests:
 memory: "30Mi"
 cpu: "50m"
 limits:
 memory: "50Mi"
 cpu: "50m"

● Classic container - No mounts/secrets - simple app
● Default container profile (no additional LINUX capabilities + seccomp)
● Container optimized OS - read only root partition (CVE-2019-5736 mitigation)
● User namespaces*

Container breakout - mitigations

Cluster takeover - mitigations

● Completely isolated environment

● automountServiceAccountToken: false

● Metadata concealment / Network policies

Network policy
kind: NetworkPolicy
spec:
 podSelector:
 matchLabels:
 app: t19
 policyTypes:
 - Ingress
 - Egress
 egress:
 - to:
 - ipBlock:
 cidr: 0.0.0.0/0
 except:
 - 169.254.169.254/32
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: t19-nginx

Challenge conclusion

● 8 participants solved
○ 6 found 4th flag

● Excellent write-ups with solutions
● Links and finalists
● Challenge coins molded

https://www.twistlock.com/labs-blog/t19-challenge-twistlock-labs-first-security-challenge-summary-solutions/

Key takeouts

● Good engineering == cost saving

● Good security

● Kubernetes is a great platform to host a live CTF

Try to solve?

● http://t19challenge.com/

● Follow the instructions to run

● Don’t cheat and good luck!

● See you in T20?

http://t19challenge.com/

Thank you!
Twistlock.com/labs
@TwistlockLabs

