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How Intuit Does Canary and Blue Green 
Deployments with a k8s Controller
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Some Intuit Statistics
Intuit
• 4 business units
• 30 business segments
• 1,200+ developers using Kubernetes

Kubernetes
• 120+ clusters (Intuit managed) 
• 3,200 nodes
• 25,000 cpu cores
• 2,400 namespaces
• 27,000 pods
• 1,300 deploys a day



K8S Deployment Strategies
Recreate
Version A is terminated then version B is rolled out.

Rolling Update
Version B is slowly rolled out and replacing version A.

?

?

?

Blue/Green
Version B is released alongside version A, then the traffic is switched to version B.

Canary
Version B is released to a subset of users, then proceed to a full rollout.

A/B testing
Version B is released to a subset of users under specific condition.



GitOps

What: 
• Git as single source of truth of the desired state of your infrastructure and apps

Why:
• Observability
• Auditability & compliance
• Consistent rollback process
• Facilitates disaster recovery
• Developer-centric
• Perfect fit for Kubernetes declarative manifests

How:
• Argo CD



Problem

How to implement Blue-Green/Canary using 
GitOps?

• No built-in support for Blue-Green/Canary in K8S
• GitOps is declarative, Blue-Green/Canary are imperative
• Integration with CI tools



Attempt 1: Jenkins scripting

Except...

• Did not fit our GitOps model
• Not idempotent
• Extremely brittle (lots of assumptions and edge cases)
• Jenkins requires K8S credentials to deploy (risky!)
• Painful to set up
• and more...



Attempt 2: Deployment Hooks

Except...

• Still not idempotent and not transparent
• Requires a lot of work to start using it
• Still not following GitOps



Attempt 3: Custom Controller

Argo Rollouts Design Considerations

• Codifies the deployment orchestration in the controller
• GitOps-friendly (idempotent)
• Runs inside the K8S cluster
• Easy adoption and migration from deployments
• Feature parity with deployments



Introducing Argo Rollouts

• An advanced open-source K8S 
deployment controller

• Kubernetes-native
• Supports Blue-Green & Canary 

deployments

https://github.com/argoproj/argo-rollouts

https://github.com/argoproj/argo-rollouts


How it works

• Handles ReplicaSet creation, scaling, and 
deletion

• Single Desired State as a Pod Spec
• Support manual and automated promotions
• Integrates with HPA



From Deployment to Argo Rollout
apiVersion: apps/v1
kind: Deployment
metadata:
  name: exciting-app
spec:
  replicas: 10
  selector:
    app:  exciting-app
  template:
    metadata:
      labels:
        app: exciting-app
    spec:
      containers:
        - name: exciting-app
          image: example/hello-world

    strategy:
      ...

apiVersion: apps/v1 argoproj.io/v1alpha1
kind: Deployment Rollout



Blue-Green Strategy
apiVersion: apps/v1
kind: Deployment
metadata:
  name: exciting-app
spec:
  replicas: 10
  selector:
    app:  exciting-app
  template:
    metadata:
      labels:
        app: exciting-app
    spec:
      containers:
        - name: exciting-app
          image: example/hello-world
  strategy:
    blueGreen:
      activeService: active-svc
      previewService: preview-svc # optional
      previewReplicaCount: 1 # optional
      autoPromotionSeconds: 30 # optional
      scaleDownDelaySeconds: 30 # optional

apiVersion: apps/v1 argoproj.io/v1alpha1
kind: Deployment Rollout • Manages an active and 

preview Services’ selector to 
provide a service-level cutover 

• Sizing control over preview 
environment

• Manual or automatic 
promotion



Canary Strategy
apiVersion: apps/v1
kind: Deployment
metadata:
  name: exciting-app
spec:
  replicas: 10
  selector:
    app:  exciting-app
  template:
    metadata:
      labels:
        app: exciting-app
    spec:
      containers:
        - name: exciting-app
          image: example/hello-world
  strategy:
    canary:
      maxSurge: 10%
      maxUnavailable: 1
      steps:
      - setWeight: 10 #percentage
      - pause:
          duration: 60 # seconds

apiVersion: apps/v1 argoproj.io/v1alpha1
kind: Deployment Rollout • Declarative Promotion 

• No Service modification
• Traffic Split based on replica 

ratio between versions of an 
application

• Superset of Rolling Update 
Strategy



DEMO



What’s next?

•Decision-based Promotion CRD
•Service Mesh integration
•A/B testing, experimentation strategies



Resources

•Argo Rollouts: https://github.com/argoproj/argo-rollouts
•Argo CD: https://argoproj.github.io/argo-cd/
• Intuit Careers: https://careers.intuit.com/

https://github.com/argoproj/argo-rollouts
https://argoproj.github.io/argo-cd/
https://careers.intuit.com/


Thank you!


