
Argo Rollouts
How Intuit Does Canary and Blue Green
Deployments with a k8s Controller

Overview

● Intuit background
● Problem
● Options
● Final solution
● Demo!
● What’s next

Who are we

Founded

4,000

Developers

50M

Customers

1993

IPO

$6B
FY18

Revenue

21

Locations

1983

Kubernetes at Intuit (1 year)

Intuit Developer Platform
(Modern SaaS)

Splunk
(Logging)

PagerDuty
(Alerts)

Appdynamics
(Monitoring)

Wavefront
(Monitoring)

ServiceNow
(CM)

IDPS
(Secrets)

Intuit Kubernetes Service (IKS)
(Core Kubernetes with Intuit Network & Security policies & best practices)

EKS

Security &
Compliance

Kops

Continuous Operations
(Monitoring, Analytics, Remediation)

Olympus
(SSO & AWS Roles)

NetGenie
(Certs))

GitHub
(Apps as Code)

IBP 2.0 Jenkins
(Build & Test - CI/d)

Quality
Frameworks
(TDS, Overwatch, TrinityJS, Hubble…)

JFrog
Artifactory
(CDP)

Argo CD
(GitOps)

Application Services

JSK + Config +
Experimentation Intuit API (v4) Streaming/

MessagingDev Patterns
Serverless
Framework

Argo
workflows

UX Fabric

Multi-Cluster Service Mesh and Gateway Service Catalog

AWS Infrastructure VPC, ALB/NLB, S3, RDS, DynamoDB, Elasticache, ...

Developer and Operations Experience

Onboarding Monitoring Management Multi-Cluster Mgmt
(IKSM)Discover Learn/Play

Metrics/Analytics
(Team Speed Dashboards)

Some Intuit Statistics
Intuit
• 4 business units
• 30 business segments
• 1,200+ developers using Kubernetes

Kubernetes
• 120+ clusters (Intuit managed)
• 3,200 nodes
• 25,000 cpu cores
• 2,400 namespaces
• 27,000 pods
• 1,300 deploys a day

K8S Deployment Strategies
Recreate
Version A is terminated then version B is rolled out.

Rolling Update
Version B is slowly rolled out and replacing version A.

?

?

?

Blue/Green
Version B is released alongside version A, then the traffic is switched to version B.

Canary
Version B is released to a subset of users, then proceed to a full rollout.

A/B testing
Version B is released to a subset of users under specific condition.

GitOps

What:
• Git as single source of truth of the desired state of your infrastructure and apps

Why:
• Observability
• Auditability & compliance
• Consistent rollback process
• Facilitates disaster recovery
• Developer-centric
• Perfect fit for Kubernetes declarative manifests

How:
• Argo CD

Problem

How to implement Blue-Green/Canary using
GitOps?

• No built-in support for Blue-Green/Canary in K8S
• GitOps is declarative, Blue-Green/Canary are imperative
• Integration with CI tools

Attempt 1: Jenkins scripting

Except...

• Did not fit our GitOps model
• Not idempotent
• Extremely brittle (lots of assumptions and edge cases)
• Jenkins requires K8S credentials to deploy (risky!)
• Painful to set up
• and more...

Attempt 2: Deployment Hooks

Except...

• Still not idempotent and not transparent
• Requires a lot of work to start using it
• Still not following GitOps

Attempt 3: Custom Controller

Argo Rollouts Design Considerations

• Codifies the deployment orchestration in the controller
• GitOps-friendly (idempotent)
• Runs inside the K8S cluster
• Easy adoption and migration from deployments
• Feature parity with deployments

Introducing Argo Rollouts

• An advanced open-source K8S
deployment controller

• Kubernetes-native
• Supports Blue-Green & Canary

deployments

https://github.com/argoproj/argo-rollouts

https://github.com/argoproj/argo-rollouts

How it works

• Handles ReplicaSet creation, scaling, and
deletion

• Single Desired State as a Pod Spec
• Support manual and automated promotions
• Integrates with HPA

From Deployment to Argo Rollout
apiVersion: apps/v1
kind: Deployment
metadata:
 name: exciting-app
spec:
 replicas: 10
 selector:
 app: exciting-app
 template:
 metadata:
 labels:
 app: exciting-app
 spec:
 containers:
 - name: exciting-app
 image: example/hello-world

 strategy:
 ...

apiVersion: apps/v1 argoproj.io/v1alpha1
kind: Deployment Rollout

Blue-Green Strategy
apiVersion: apps/v1
kind: Deployment
metadata:
 name: exciting-app
spec:
 replicas: 10
 selector:
 app: exciting-app
 template:
 metadata:
 labels:
 app: exciting-app
 spec:
 containers:
 - name: exciting-app
 image: example/hello-world
 strategy:
 blueGreen:
 activeService: active-svc
 previewService: preview-svc # optional
 previewReplicaCount: 1 # optional
 autoPromotionSeconds: 30 # optional
 scaleDownDelaySeconds: 30 # optional

apiVersion: apps/v1 argoproj.io/v1alpha1
kind: Deployment Rollout • Manages an active and

preview Services’ selector to
provide a service-level cutover

• Sizing control over preview
environment

• Manual or automatic
promotion

Canary Strategy
apiVersion: apps/v1
kind: Deployment
metadata:
 name: exciting-app
spec:
 replicas: 10
 selector:
 app: exciting-app
 template:
 metadata:
 labels:
 app: exciting-app
 spec:
 containers:
 - name: exciting-app
 image: example/hello-world
 strategy:
 canary:
 maxSurge: 10%
 maxUnavailable: 1
 steps:
 - setWeight: 10 #percentage
 - pause:
 duration: 60 # seconds

apiVersion: apps/v1 argoproj.io/v1alpha1
kind: Deployment Rollout • Declarative Promotion

• No Service modification
• Traffic Split based on replica

ratio between versions of an
application

• Superset of Rolling Update
Strategy

DEMO

What’s next?

•Decision-based Promotion CRD
•Service Mesh integration
•A/B testing, experimentation strategies

Resources

•Argo Rollouts: https://github.com/argoproj/argo-rollouts
•Argo CD: https://argoproj.github.io/argo-cd/
• Intuit Careers: https://careers.intuit.com/

https://github.com/argoproj/argo-rollouts
https://argoproj.github.io/argo-cd/
https://careers.intuit.com/

Thank you!

