
Fool-proof K8s 
dashboards for 
sleep-deprived 
oncalls

David Kaltschmidt
@davkals

Kubecon 2019



I’m David

All things UX at Grafana Labs

If you click and are stuck, 
reach out to me.
david@grafana.com

Twitter: @davkals

mailto:david@grafana.com


Outline

● Quick Grafana intro

● Dashboarding for k8s 
oncalls

● Maturity level framework



Grafana intro and updates



Grafana

Dashboarding
solution

Observability platform



Troubleshooting journey



Unified way to 
look at data 
from different 
sources

Logos of datasources



6.0 release: New graph panel controller to quickly iterate how to visualize



Loki BETA release: live tailing and context view

https://github.com/grafana/loki

https://github.com/grafana/loki


Dashboarding for Kubernetes oncalls



On-call

- On call is hard. You’re not creating new things, you’re fighting fires.
- Majority of on-call activities revolve around troubleshooting

Image: Slack alert



On-call

- We’re focussing on the role that dashboards play in troubleshooting
- When you look at dashboards, you’re not only trying to find the issue, 

but you also want to quickly eliminate areas that are working fine

Image: a couple of panels where only one has red



On call for Kubernetes

- In kubernetes the elimination is made difficult by an explosion of 
concepts

- Namespaces, services, pods, containers, replicasets, daemonsets
- Clusters and node

Image: Diagram of pods and containers



On call for Kubernetes

- How can effective dashboarding guide you through this jungle?
- the tools we put in place should reduce cognitive burden, not add to it

Image: List of hierarchical dashboards



The path to 1,000 dashboards

- Image: GIF of endless dashboard lists 



The path to 1,000 dashboards

- Dashboard sprawl negatively affects time to find the right dashboard
- Enablers:

- Everyone can modify dashboards (being able to edit and save gives 
uncertainty about panel purpose)

- Duplicating dashboards and changing “one thing” (worse: keeping 
original tags)

- One-off dashboards with a specific purpose that have been 
forgotten



Introducing DMM:
Dashboarding Maturity Model



Dashboarding Maturity Model

- Practices and vocabulary to use and to make decisions
- 3 levels: low, medium, high
- You may be in various levels on different parts of your dashboarding 

practice



Dashboarding maturity levels

Low

Default state
(no strategy)

Medium

Managing use of 
methodical dashboards

High

Optimizing use,
consistency by design



Low maturity: Sprawl

- Everyone can modify, no reviews
- Duplicate used regularly, tags lose meaning
- One-off dashboards

Image: Duplicate button



Low maturity: Single point of failure

- No version control
- Live version is source of truth

Image: Angry tech worker



Low maturity: Browsing

- No alerts
- Need to browse regularly

Image: Dev staring at dashboard



Dashboarding maturity levels

Low

Default state
(no strategy)

Medium

Managing use of 
methodical dashboards

High

Optimizing use,
consistency by design



Medium maturity: Sprawl prevention

- Use of template variables (instead of duplicating dashboards) [Docs]

Image: Template variable UI

https://grafana.com/docs/reference/templating/


Medium maturity: Methodical dashboards

- Hierarchical dashboards
- Aggregated views with drill-down
- Hierarchies:

- Cluster -> node
- Namespace -> pod -> container

Image: Cluster panel with drill-down link



Medium maturity: Methodical dashboards

- USE method for resources [Ref]:
For each resource measure utilization, saturation, errors

- RED methods for services [Video]

Image: Service dashboard

http://www.brendangregg.com/usemethod.html
https://www.youtube.com/watch?v=9dRSYjBPaZM


Medium maturity: Methodical dashboards

- Normalizing panel axis
- Expressive charts

Image: Dashboard panel of CPU usage



Medium maturity: Managing dashboards

- Version controlled dashboard sources
- Currently by copy/pasting JSON
- RFC in our design doc

Image: Github PR

https://docs.google.com/document/d/1M28_aAZRb8EqZ5dXvmV1IJfwCa2NEbe7LhBXe7aCdeY/edit#heading=h.5x0d5h95i329


Medium maturity: Infrequent browsing

- Most dashboards are linked to by alerts
- Or you arrive via drill-down

- related: hierarchical dashboards make use of template variables, 
it's very impractical to go through the variable list and select the 
one after the other

Image: Alert with link to dashboard



Dashboarding maturity levels

Low

Default state
(no strategy)

Medium

Managing use of 
methodical dashboards

High

Optimizing use,
consistency by design



High maturity: Optimizing use

- Actively reducing sprawl
- Regularly reviewing existing dashboards
- Tracking use

Image: Robot hoover



High maturity: Consistency by design

- Use of scripting libraries to generate dashboards
- grafonnet (Jsonnet)
- grafanalib (Python)

- Define timeseriesGraph(DS, QUERY) once, apply same 
attributes/styles across all dashboards

https://github.com/grafana/grafonnet-lib
https://github.com/weaveworks/grafanalib


High maturity: Consistency by design

- Scripting languages reduce change sets for reviews

Image: PR of single-line change



High maturity: Mixins

- Mixins are sets of dashboards and alerts for a given software, 
peer-reviewed [Kubernetes mixins]

Image: Repo screenshot

https://github.com/kubernetes-monitoring/kubernetes-mixin


Future workflow: Dashboard as code

- Live edit JSON and preview dashboards
- Live edit JSONNET sources or Python sources and preview in browser
- Open PR directly from Grafana

Image: Mockup of the edit and preview experience



Dashboarding maturity levels

Low
Default state

(no strategy)

- Everyone can modify

- Duplicate used regularly

- One-off dashboards

- No version control

- Lots of browsing

Medium
Managing use of methodical 

dashboards

- prevention of sprawl

- use of template variables

- methodical dashboards

- hierarchical dashboards

- normalised panels axis

- version control

- infrequent browsing

High
Optimizing use,

consistency by design

- active sprawl reduction

- use of scripting libraries

- use of mixins

- no editing in the browser

- browsing is the exception



DMM for oncalls:
Your dashboarding practices should 
reduce cognitive load, not add to it.



Tack for 
listening

UX feedback to
david@grafana.com
@davkals

& LOGS

mailto:david@grafana.com

