
Fool-proof K8s
dashboards for
sleep-deprived
on-calls

David Kaltschmidt
@davkals

Kubecon 2019

I’m David

Working on Explore, Prometheus,
and Loki at Grafana Labs

Previously:

Unifying Metrics/Logs/Traces at Kausal,

Work on WeaveScope

david@grafana.com

Twitter: @davkals

mailto:david@grafana.com

Cognitive load

In which direction do
I have to pull the
little lever to open
the metro door?

Dashboarding for Kubernetes on-calls

On-call

- Good on-call is
debugging and
follow-up, improving
things for the rest.

- Bad on-call is mostly
incident response where
every minute counts

On-call for Kubernetes

https://kubernetes.io/docs/tutorials/kubernetes-basics/

The path to 1,000 dashboards

Introducing DMM:
Dashboarding Maturity Model

Dashboarding maturity levels

Low

Default state
(no strategy)

Medium

Managing use of
methodical dashboards

High

Optimizing use,
consistency by design

Low maturity: Sprawl

Low maturity: No version control

+💾 = ?

Low maturity: Browsing for dashboards

Dashboarding maturity levels

Low

No strategy
(default state)

Medium

Managing the use of
methodical dashboards

High

Optimizing use,
consistency by design

Medium maturity: Prevent sprawl by using template variables [Docs]

https://grafana.com/docs/reference/templating/

Medium maturity: Methodical dashboards

- USE method for resources:
For each resource measure
utilization, saturation, errors

- RED method for services:
For each service measure request
and error rate, and duration

- Your own method

http://www.brendangregg.com/usemethod.html
https://www.youtube.com/watch?v=9dRSYjBPaZM

Medium maturity: USE method dashboards (part of the Kubernetes mixin)

https://github.com/kubernetes-monitoring/kubernetes-mixin

Medium maturity: Peer-reviewed K8s dashboards in the Kubernetes mixin

https://github.com/kubernetes-monitoring/kubernetes-mixin

Medium maturity: Hierarchical dashboards

- Summary views with
aggregate queries

- Queries have
breakdown by next
level

- Tree structure
reflecting the k8s
hierarchies

Medium maturity: Hierarchical dashboards along K8s hierarchies

Cluster

Namespace

Pod

Medium maturity: Hierarchical dashboards with drill-down to next level

Medium maturity:
Service hierarchies

- RED method
- One row per service
- Row order reflects

data flow

Medium maturity:
Expressive charts

- Meaningful use of
color

- Normalize axis
where you can

- Understand the
underlying metrics

Medium maturity: Normalized charts (part of Kubernetes mixin)

https://github.com/kubernetes-monitoring/kubernetes-mixin/blob/2432475c37f0e3b3e312714f577e9952db5964a7/rules/rules.libsonnet#L199

Expressive dashboards: Split service dashboards where magnitude differs

Read API Write API (1000x)

Medium maturity: Directed browsing

- Template variables
make it harder to
“just browse”

- Most dashboards
should be linked to
by alerts

- Browsing is directed
(drill-down)

Medium maturity: Managing dashboards

- Version controlled
dashboard sources

- Currently by copy/pasting
JSON

- RFC in our design doc

https://docs.google.com/document/d/1M28_aAZRb8EqZ5dXvmV1IJfwCa2NEbe7LhBXe7aCdeY/edit#heading=h.5x0d5h95i329

Cognitive load

On which side do you
usually swipe your
tickets at the
turnstile?

Dashboarding maturity levels

Low

Default state
(no strategy)

Medium

Managing use of
methodical dashboards

High

Optimizing use,
consistency by design

High maturity: Optimizing use

- Actively reducing sprawl
- Regularly reviewing existing

dashboards
- Tracking use

High maturity: Consistency by design

- Use of scripting libraries
to generate dashboards

- grafonnet (Jsonnet)
- grafanalib (Python)

- Consistent attributes and
styles across all
dashboards

- Smaller change sets

g.dashboard('Cluster').addRow(
 g.row('CPU').addPanel(
 g.panel('CPU Utilisation') +
 g.queryPanel('node:cluster_cpu_utilisation:ratio') +
 g.stack +
 { yaxes: g.yaxes({ format: 'percentunit', max: 1 }) },
).addPanel(
 g.panel('CPU Saturation (Load1)') +
 g.queryPanel(|||
 node:node_cpu_saturation_load1: /
scalar(sum(min(kube_pod_info) by (node)))
 |||) +
 g.stack +
 { yaxes: g.yaxes({ format: 'percentunit', max: 1 }) },
)
)

https://github.com/grafana/grafonnet-lib
https://github.com/weaveworks/grafanalib

High maturity: Use of mixins or other peer-reviewed templates

Prometheus Monitoring Mixins
Talk at PromCon 2018
by Tom Wilkie
https://www.youtube.com/watch?v=GDdnL5R_l-Y

https://www.youtube.com/watch?v=GDdnL5R_l-Y

Future workflow: Dashboard as code

- Live edit JSON and preview dashboards
- Live edit Jsonnet or Python sources and preview in browser
- Open PR directly from Grafana

Dashboarding maturity levels

Low
No strategy

(default state)

- Everyone can modify

- Duplicate used regularly

- One-off dashboards

- No version control

- Lots of browsing

Medium
Managing use of methodical

dashboards

- prevention of sprawl

- use of template variables

- methodical dashboards

- hierarchical dashboards

- expressive charts

- version control

- directed browsing

High
Optimizing use,

consistency by design

- active sprawl reduction

- use of scripting libraries

- use of mixins

- no editing in the browser

- browsing is the exception

DMM for oncalls:
Your dashboarding practices should
reduce cognitive load, not add to it.

Thank you.

UX feedback to
david@grafana.com
@davkals

Don’t be the
Barcelona Metro of
dashboards!

mailto:david@grafana.com

