
Access Control In
Kubernetes

What’s Missing, And How To Fix That

@SethMcCombs@vllry

Disclaimer
Opinions!

● This is not about Lyft systems
● This is not about Triller systems
● We might be wrong

What Can We Do About All This?

● RBAC
● Network Policies (native, Calico, Istio, etc)
● Mutating admission webhooks (native)
● Open Policy Agent
● Custom API gateways

Broad Categories

● Kubernetes access
○ What can the app do to the

Kubernetes control & data
planes?

● Runtime characteristics
○ What can run, and in what

way?
● Network access

○ What can access what?

RBAC

RBAC Role

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default
 name: pod-reader
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

RBAC RoleBinding

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: read-pods
 namespace: default
subjects:
- kind: User
 name: vallery
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

Other Forms of K8S API Access Control

● ABAC: granular user-based permissions.
● Node: for kubelets only. Kubelet is granted permissions based on the pods it

runs.
● Webhook: post to URL, use that response.

RBAC Limitations

● No sub-object access control
● Universal permission by resource type

Namespaces

“I wish these parts
could communicate
more easily.”

https://xkcd.com/2044/

Admission Webhooks

Admission Webhooks

● Validating/Mutating AdmissionWebhooks used to verify/modify Kubernetes
objects declared via the Kubernetes API

● Custom hooks can be written to ensure resources not meeting cluster criteria
are not created - resource creation denied

● Change objects missing certain requirements - Adding labels/annotations,
resource limits, etc

● Hooks can be used to restrict the creation of objects in a Namespace, but
aren’t actively controlling what runs in the namespace after create/apply

Custom API Gateways

What is a gateway/deputy?

● A deputy/gateway is designed to perform specific actions, which require
elevated permissions.

● The deputy exposes an API to trigger these actions.
● Acts as a logical gate to the underlying system.

API Deputy Drawbacks

● You still have a service with elevated permissions.
● Many actions require a very simple logical gate.

○ EG “only allow updates to this field”.

Open Policy Agent (OPA)

Open Policy Agent

● OPA offloads Policy Decisions from
a service (across the stack)

● Queries - whether an action can be
taken by a service, answer is
provided back to the service with
an allow or deny.

● Allows context specific based on
status or data of other services in
the system

© 2019 Open Policy Agent contributors

Using OPA for Resource Access Control

● Calls to Kubernetes API are sent to OPA with the JSON Object
● OPA compares to its rules, and returns an Allow or Deny (Validating

AdmissionWebhook)
● OPA can tell you the reason why the action was not allowed
● Can also return a JSON patch to modify the object, thus acting as a Mutating

AdmissionWebhook

Using OPA for NetworkPolicy

● OPA could be deputized to provide context specific updates/changes to
Kubernetes NetworkPolicy, taking advantage of a CNI Plugin like Calico,
Cilium or others

● Labels or Annotations applied sets of objects could be used to manage
intra-Namespace communication between pods, services, etc.

● The combination of OPA for NetworkPolicy and AdmissionControllers would
allow only properly annotated resources to be created, and those annotations
would further trigger creations/updates on NetworkPolicy rules

Network Access Policy

Service-Level Network Perimeters

● The most convenient way to restrict
access is to outright block network
traffic.

● Not part of the Kubernetes network
model.

Calico (Review for inclusion)

● Restrict network ingress, by origin.
● Restrict network egress, by origin.

Calico (Examples if needed)

Deny All Egress
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-egress
 namespace: advanced-policy-demo
spec:
 podSelector:
 matchLabels: {}
 policyTypes:
 - Egress

Deny all Ingress
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-ingress
 namespace: advanced-policy-demo
spec:
 podSelector:
 matchLabels: {}
 policyTypes:
 - Ingress

Allow Ingress to pod matching
Label (from pod matching a
label?)
apiVersion:
networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: access-nginx
 namespace:
advanced-policy-demo
spec:
 podSelector:
 matchLabels:
 $KEY: $VALUE
 ingress:
 - from:
 - podSelector:
 matchLabels:

$KEY: $VALUE

DNS Traffic Egress
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-dns-access
 namespace: advanced-policy-demo
spec:
 podSelector:
 matchLabels: {}
 policyTypes:
 - Egress
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 name: kube-system
 ports:
 - protocol: UDP
 port: 53

Time For The
Opinions

Optimizing Boundaries

Sub-namespace Permissions?

SpaceshipGrey:~ vallery$ ls -l
total 32
drwx------@ 5 vallery staff ... Applications
drwx------+ 17 vallery staff ... Desktop

apiVersion: ...
kind: ...
metadata:

...
spec:

...
status:

...

apiVersion: ...
kind: ...
metadata:

owningRoles:
- jenkins
- ops

...
spec:

...
status:

...

Smaller Namespaces?

What Are Our Limiting Factors?

● Objects that rely on one another need to be in the same namespace.
○ EG Ingress / Service / Deployment, HPA / Deployment

● (Namespace level) accounts can’t be used in multiple namespaces.
○ Users / bots will need more accounts.

Too Long, Didn’t Listen

1. Use RBAC roles with
namespaces to
segment access.

2. Reduce network
access between pods,
with a service mesh or
policy tool.

3. Gate complex,
high-access behavior
behind APIs and
controllers (off the
shelf, or bespoke).

Vallery Lancey

● Infrastructure at Lyft
● @vllry on most things

● Kubernetes contributor (mostly
SIG-network, but it’s scattered). Dabbles
in many aspects of distributed systems.

● SRE at Triller
● Tweets at @SethMcCombs

● More ops than dev, fiddles with containers
and Kubernetes. Avid guitarist and
collector of fountain pens.

Seth McCombs

