
© 2017 AT&T Intellectual Property. All rights reserved. AT&T, Globe logo, Mobilizing Your World and DIRECTV are registerd trademarks and service marks of AT&T Intellectual 

Property and/or AT&T affiliated companies. All other marks are the property of their respective owners. AT&T Proprietary (Internal Use Only). Not for use or disclosure outside 

the AT&T companies except under written agreement.

Serverless Edge Orchestration



Eden Rozin
CPO, Product Management
AT&T Tel-Aviv, Israel

About me 



Edge Computing 

• Key enabler for 5G

• Decentralized architecture

• Latency issue mitigation

• Essential for IOT



However… 

• Distributed across 1000s of locations 

• Limited space & real estate 

• Limited cooling and power 

• Scarce computing resources

• Significant workload support

• Runs 3rd party software



Orchestration on Edge vs Central Cloud Challenges 

Location of application components Location of nodes plays significant role in 
application blueprint

Pretty much location-agnostic

Mobility of workloads Workload transition from one node to the 
other

Static unless there is a cloud node failure

Workload dynamic Various applications need to run at various 
times to serve different needs

Static workload most of the time.
Once you deploy a service, it is there forever

Architecture heterogeneity Edge is made of different nodes, various sizes, 
vendors and technologies. Large, small, PNFs, 
Akraino, Green Grass, Azure Edge, etc.

Mostly homogeneous. If it is Openstack, AWS or 
Azure, it is the same Cloud OS for all nodes, and 
diversity is considerably small

Latency Latency and distance from the end consumer 
plays a major role

Most central cloud apps are not latency-
sensitive

Availability of resources Edge nodes are small; availability of resources 
for application is not guaranteed

Availability of resources is pretty much 
guaranteed. This is one of the basic principles 
of any cloud

Edge Central Cloud



Distributed data collection Collection needs to be done from thousands of 
distributed nodes across the network

Everything is centralized and collected to a 
central DB

Architecture heterogeneity Edge is made of different vendors; each has its 
own metrics and APIs

Each cloud vendor has its own collection and 
monitoring framework (OS Ceilometer,  AWS 
CloudWatch, etc.)

Distributed root cause analysis Identification of the root cause and its impact 
on the service in distributed environment

Although it’s complicated, it’s still simpler than 
doing it on the edge network

Distributed closed loop Location and latency take major role in 
recovery, mitigation plan

Recovery is much simpler. Most of the time it’s 
to spin up another instance 

Edge Central Cloud

Monitoring on Edge vs Central Cloud Challenges 



Supporting ACID (transactions) Distribution and partition of the edge is a 
challenge for every transactional DB

Everything is in one place; just install SQL DB

High availability of DB Replication of DB is not practical in most cases No problem having any H/A solution on central 
cloud

Latency Latency requirements prevent using a DB on 
central cloud; DB needs to be local to the apps

Apps are close to the DB in central cloud, no 
latency issues

Mobility/Availability of data on the edge 
nodes

The environment is dynamic so all data needs 
to be available to all nodes although it is 
distributed 

No such issue in central cloud

Edge Central Cloud

Data Management on Edge vs Central Cloud Challenges 



Edge Operating System Manifesto 

• Treat the Edge as one big distributed compute 

• Harness distribution for availability and reliability 

• Data is available anywhere on the Edge network 

• Execute workload anywhere on the Edge network 

• Intelligent resource management 

• Location-sensitive workload orchestration 

• Expand application beyond Edge boundaries (Public Cloud, DC, etc.) 

• No single point of failure



Akraino Edge Stack 

• The industry adopted cloud native for edge 

• Containers have smaller footprint than VMs

• Improved resource utilization 

• Micro-services architecture 

• Integration of new micro-service is complicated 

• Permanent allocation of resources 

• Container is still larger execution unit

However…



• Functions are the unit of deployment and scaling

• No machines, VMs, or containers visible in the programming model

• Permanent storage lives elsewhere (SLE)

• Scales per request; Users cannot over- or under-provision capacity

• Never pay for idle (no cold servers/containers or their costs)

• Implicitly fault-tolerant because functions can run anywhere

• Bring Your Own Code (BYOC)

• Metrics and logging are a universal right

Introducing Serverless
FaaS (Function-as-a-Service)



Functions in a Nutshell



What is Serverless good for? 



How it works? 

What did we build?



Edgility: Serverless Edge

An open-source attempt to marry serverless 

with edge, in order to optimize resource 

management by intelligent orchestration. 



Akraino Based Serverless Edge Node with IoT Gateway



ONAP SDC, SO Orchestration and Monitoring Infrastructure



Intelligent Transport System (ITS)

1. Function deployment for each car vendor

2. Function mobility

3. Manual scale-out to accommodate load

Congestion avoidance system 
Re-route connected cars to alternative routes:  

../Downloads/Video2.mp4


Detailed Demo Architecture 



ONAP SDC, SO Orchestration and Monitoring InfrastructureModeling the Serverless Edge Stack using ONAP SDC 



Edgility Code Contribution to Akraino



Next Steps 



Next steps

We are about to start the development of the 2nd phase 

of Edgility: “Dynamicity of Function powered by ML”.

We welcome anyone who would like to join our journey!



Thank You! 

Contact Details: er434w@att.com

mailto:er434w@att.com

