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AI/ML is a team sport



How to make AI/ML teams 

More Productive 



Cloud native AI/ML platform

ML Framework + 
Container + 
Kubernetes + HW 
Accelerators

Choose your favorite 
ML Framework, pack 
models up in 
Containers, run on 
Kubernetes at scale

ML Framework
Industry-standard & widely adopted 

Container
Industry-standard

Container 
Orchestration

Industry-standard

Hardware Accelerators GPUs TPUsCPUs

Simple/Fast/Cost-effective



Why Kubernetes for AI/ML?

● Portability
○ Cloud native, open, standard APIs

■ Seamlessly port workloads between Laptop/Cloud 

● Scalability
○ Kubernetes scales from a single 

workstation to thousands of nodes
■ Support for GPU/TPU and distributed computing

● Productivity
○ Frees up users from managing their own 

workstations, servers  and VMs.
■ Lets you focus on model building and training

Design 
Experiment

Provision 
Resources

Train

Evaluate

Teardown
Resources

Design 
Experiment

K8s provisions 
resources

Evaluate

Without 
Kubernetes

With 
Kubernetes

Simple/Fast/Cost-effective
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Kubeflow 

A Kubernetes-native OSS 
Platform to Develop, Deploy 
and Manage, Scalable and 
End-to-End ML Workloads

https://kubeflow.org

https://github.com/kubeflow


TensorFlow training (TFJob)

● Integrates TensorFlow distributed training 
and estimator API with Kubernetes

● Uses Kubernetes to scale training and 
leverage hardware accelerators

● Users benefit from Kubernetes toolchain
○ kubectl for CLI
○ Kubernetes dashboard for monitoring

apiVersion: kubeflow.org/v1alpha2
kind: TFJob
metadata:
  name: tf-job-simple
  namespace: kubeflow
spec:
 tfReplicaSpecs:
    Workers:
      replicas: 3
      template:
        spec:
          containers:
          - image: acme/myjob

Simple/Fast/Cost-effective



TensorFlow serving

● Kubernetes native TFServing

● Leveraging Kubernetes to simplify 

model rollouts

● Prometheus exporter for metrics

● ISTIO for telemetry and traffic 

splitting

model push ≠ binary push

Simple/Fast/Cost-effective
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Get started right

● Day 0 start with the infrastructure 
(Notebook, Kubernetes, ISTIO, etc...) 

● Day 0 focus on model development

○ Use UIs to launch notebooks

○ Python SDK (fairing) for training / 
deploying models

● Day N leverage K8s to scale

○ Use the same infrastructure as non-ML 
applications

○ Build a single infrastructure team

Simple/Fast/Cost-effective



Day 0: Data scientist friendly Notebooks
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Connect to 
data, machines

Build models

Train

1

2

3

Deploy4

Simple/Fast/Cost-effective
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Deploy Model 

Simple/Fast/Cost-effective



Experimentation by multiple data scientists
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Simple/Fast/Cost-effective



Kubernetes can handle the complete stack
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Simple/Fast/Cost-effective



                    Kubeflow

On-premises

Training Prediction

Hybrid ML SDK

...

AI Platform

Cloud Provider

Training Prediction ...

Simple/Fast/Cost-effective



Kubeflow Fairing is an open 
source Hybrid ML SDK for 
data scientists to ‘write ML 
code once and run 
anywhere’. AI Platform

Local

Simple/Fast/Cost-effective



Code: Today

Local

import xgboost

class MyModel(object):
    def train(self):
       # load data
       # do feature engineering
       # train a model
    
    def predict():
       # prediction logic
    
if __name__ == '__main__':
    model = MyModel()
    model.train()

Build & Deploy to AI Platform

Training

gcloud ml-engine jobs submit training my_job \
          --module-name trainer.task \
          --staging-bucket gs://my-bucket \
          --package-path /my/code/path/trainer \
          --packages additional-dep1.tar.gz,dep2.whl

Prediction

gcloud alpha ml-engine versions create 
{VERSION_NAME} --model {MODEL_NAME} \ --origin 
gs://{BUCKET}/{MODEL_DIR}/ \ --runtime-version 
{RUNTIME_VERSION} \ --package-uris 
gs://{BUCKET}/{PACKAGES_DIR}/my_package-0.2.tar.gz \ 
--model-class=my_model.ModelExample

Build & Deploy to Kubeflow

apiVersion: kubeflow.org/v1alpha2
kind: TFJob
metadata:
  labels:
    experiment: experiment10
  name: tfjob
  namespace: kubeflow
spec:
  tfReplicaSpecs:
    Ps:
      replicas: 1
      template:
        metadata:
          creationTimestamp: null
        spec:
          containers:
          - args:
            - python
            - tf_cnn_benchmarks.py
            image: 
.
.
.
.

Simple/Fast/Cost-effective



Local

import xgboost

class MyModel(object):
    def train(self):
       # load data
       # train a model
    
    def predict():
       # prediction logic
    
from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
    backend=Backend(“Local”,
      “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
    backend=Backend(“Local”,
      “fairing.config”))
endpoint.create()

Build & Deploy to AI Platform
 
import xgboost

class MyModel(object):
    def train(self):
       # load data
       # train a model
    
    def predict():
       # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
    backend=Backend(“ai_platform”,
      “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
    backend=Backend(“ai_platform”,
      “fairing.config”))
endpoint.create()

Build & Deploy to Kubeflow

import xgboost

class MyModel(object):
    def train(self):
       # load data
       # train a model
    
    def predict():
       # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
    backend=Backend(“Kubeflow”,
      “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
    backend=Backend(“Kubeflow”,
      “fairing.config”))
endpoint.create()

Code: With Kubeflow Fairing

Simple/Fast/Cost-effective



Code: With Kubeflow Fairing
Local

import xgboost

class MyModel(object):
    def train(self):
       # load data
       # train a model
    
    def predict():
       # prediction logic
    
from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
    backend=Backend(“Local”,
      “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
    backend=Backend(“Local”,
      “fairing.config”))
endpoint.create()

Build & Deploy to AI Platform
 
import xgboost

class MyModel(object):
    def train(self):
       # load data
       # train a model
    
    def predict():
       # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
    backend=Backend(“ai_platform”,
      “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
    backend=Backend(“ai_platform”,
      “fairing.config”))
endpoint.create()

Build & Deploy to Kubeflow

import xgboost

class MyModel(object):
    def train(self):
       # load data
       # train a model
    
    def predict():
       # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
    backend=Backend(“Kubeflow”,
      “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
    backend=Backend(“Kubeflow”,
      “fairing.config”))
endpoint.create()

Simple/Fast/Cost-effective



Kubeflow Fairing

Scalable and Cost Effective: Data Scientists can 
easily burst onto GCP when they need more 
resources (i.e. more machines, GPUs, or TPUs).

Data Scientist Focused: Simple and uses 
language familiar to Data Scientists 

Multi-Platform: Supports AI Platform and Kubleflow, 
making it easy for users to switch between on-prem 
and GCP. 

Multi-Framework: Supports XGBoost, 
TensorFlow (single node), and Pytorch (single 
node). 

Easily Train, Tune and Deploy models: 
Supports the full ML lifecycle.

An open source Hybrid ML SDK for 
data scientists to ‘write ML code 
once and run anywhere’

Simple/Fast/Cost-effective



Demo: Hybrid E2E ML with Kubeflow Fairing

Discover

AI Platform

Share

AI Hub

AI Hub

Build
Local

Train

Deploy
AI Platform

Simple/Fast/Cost-effective



DEMO

https://docs.google.com/file/d/1ezwKOkWhN1aHFv5FJmu_tQVxOHl8-GrD/preview


Kubeflow Fairing: Key Benefits for ML Ops Teams

Standardized API Enforces Best Practices1

2

3

Open Source SDK --> No Lock-in

Easy ‘Remoting’ & Bursting to the Cloud

Simple/Fast/Cost-effective



Cluster autoscaler with GPUs and TPUs

● Automatically scale up/down 
the cluster for the best 
performance over cost

● Nodes with GPUs/TPUs get 
created when a cluster needs 
more capacity

● Nodes with GPUs/TPUs get 
deleted when they’re idle

Simple/Fast/Cost-effective
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Today: ML Pipeline is Complex and Siloed
Multiple Management 
Interfaces:

Collection and 
Exploration

ML Development 
and Training

Deployment & Serving
(cloud or edge)

Stream Processing

ETL and Batch ML Training Jobs

Interactive Data Science ML model

Interactive app

Data and 
Compute:

Data and 
Compute:

Data and 
Compute:

Data Engineers
App Developers, 
Data EngineersData Scientists

Data Sources

Data Lakes/
Warehouses Reports and 

Dashboards

Triggers and 
Interaction
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Kubernetes: One Platform, Complete ML Lifecycle

Persistent Data and Computation Cluster

Scalable & Open 
ML Pipeline

Serverless 
Models & APIs

Automated Collection 
& Pre-processing

Monitor

Intelligent & 
Interactive Apps

Simple and 
self-service 
consumption

Real-time and historical data

Open 
Services

Data Sources
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Open-Source ML Pipeline Components By Category

Data Ingest 
& Prep

Training 
& Validation

model 
serving

Dev Tools  
<..>
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Typical Data Science Pipeline 

Data Ingest 
& Prep

Source A
(Batch)

Feature 
Vector 

Snapshot model 
training

model 
validation

Data Ingest 
& Prep

Source B
(Stream)

Data Ingest 
& Prep

Source C
(Fetch)

model 
deployment

Deployment
testing

Model Report Function Notification

Output
Artifact

Run

Code
Input

Model Tests
serving
function TestsETL/Stream

Pipeline must be automated !



KubeFlow Pipeline

● Advanced  workflow engine and 
experiment management in one tool 

● Convert python code to workflows

● Reusable component library

● Managing multiple runs,  compare 
artifacts and results between runs

● Steps can be containers, code scripts, 
CRDs (e.g. TFJob), and now functions

30
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Application Serving Environment, More Challenges

Data Ingest 
& Prep

Source A
(Batch)

Historical and 
real-time data

model 
serving

Build 
feature
vectorData Ingest 

& Prep
Source B
(Stream)

Data Ingest 
& Prep

Source C
(Fetch)

Business
App

Real-time Application Pipeline

Monitoring 
& Logging

Intelligent & 
Interactive Apps



Serverless A Way To Simplify Data Science

● Automate process from code to container and assigned cluster resources 
● Add instrumentation with minimal developer overhead 
● Auto scaling, rolling upgrades, …

32

Sounds Ideal So Why Not?
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Nuclio: Taking Serverless to Data Intensive Apps

▪ Non-blocking, parallel
▪ Zero copy, buffer reuse
▪ Up to 400K events/sec/proc
▪ GPU optimizations

Extreme Performance Advanced Data & AI Features

▪ Auto-rebalance, checkpoints
▪ Any source: Kafka, NATS, Kinesis, 

event-hub, iguazio, pub/sub, RabbitMQ, 
Cron, ..

▪ Jupyter, NVIDIA Rapids 
integration

▪ Data bindings
▪ Shared volumes 
▪ Context cache

Statefulness
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Nuclio Automating & Accelerating Data Science

One magic command from 
notebook to function

Extending Pipelines from batch:

1. Parallel processing steps

2. Code build/deployment steps

3. Stream processing

GPU resource optimization for ETL, DL and ML
Automation:

1. Auto-scaling (to zero)

2. Automated logging & monitoring

3. Security hardening 

4. Auto-build and CI/CD

5. Workload mobility (cloud/edge/..)



Demo: Building an end to end ML 
pipeline in minutes with KubeFlow
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Simple

Fast

Cost-effective

Empowering your teams to drive innovation

● Data Scientist friendly notebooks 
● Freedom from managing infrastructure
● TFJob, TFServing, ...

● On-demand scale up and down 
● GPUs and TPUs

● Making AI/ML teams more productive
● Avoid vendor lock-in with open platform
● Write once run anywhere 
● Preemptible GPUs/TPUs 


