
Serverless Compute Platforms

on Kubernetes:

Beyond Web Applications

Alex Glikson
Senior Research Architect, Cloud Platforms

Carnegie Mellon University

(IBM Research, Israel)

KubeCon, May 2019

In collaboration with Ping-Min Lin, Shengjie Luo, Ke Chang, Shichao Nie

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Deep Learning

○ Interactive Computing

■ Demo

● Conclusions

2

Serverless

● Many definitions

● In a nutshell:

● Avoid management of servers, as a representative example of tasks that:
○ Keep you distracted from developing your *core* business capabilities, and

○ Can be outsourced to someone you trust, for whom this *would* be their core business

● Serverless = Distruction-Free
● Separation of concerns

3

Serverless = Distruction-Free (Examples)

● Object Storage:
○ Core: storage of unstructured data objects

○ Distruction: servers, storage, network, high availability, fault tolerance, replication, consistency

● Micro-services:
○ Core: services logic, interfaces

○ Distruction: infra, scaling, LB, HA/FT, API management, routing, service discovery, etc

● Async/Event-driven:
○ Core: events, processing logic

○ Distruction: eventing, messaging, queuing, notifications, etc (+infra/scaling/LB/HA/FT/auth/etc)

● …

4

Example:

Amazon S3

Example:

Kubernetes+Istio

Example:

Lambda, SNS, etc

Serverless Compute Platform (SCP)

● Platform that executes user-provided code (BYOC)

● Distruction-free
○ Simplified management

■ Deployment, scaling, metering, monitoring, logging, updates, etc

○ Seamless integration with services that the ‘compute’ interacts with (or depends on)

■ Event sources, data sources, communication middleware, etc.

● Often optimized for specific application patterns

● Elasticity / Pay-per-use

5

SCP: Function as a Service (FaaS)

6

Platform

Property

General-Purpose FaaS

Examples - Lambda, Azure functions, Google Functions;

- Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Management Fully managed isolated runtime containers

Integration Seamless integration with multiple event sources

Application

Pattern
Short-lived, ephemeral functions; High load variability; Often low sensitivity to latency

Elasticity,

Pay-per-use
Per-request scaling and metering (e.g., 100ms granularity in Lambda)

SCP: Specialized (Embedded) FaaS

7

Platform

Property

Programmable

Event-driven platforms

Programmable

Network edge platforms

Programmable

Workflow engines

Examples Trillio Functions,

Github Actions

PubNub Functions,

Lambda@Edge

NodeRED, IBM Watson

Streaming Pipelines

Code

Management

Integration

Application

Pattern

Elasticity,

Pay-per-use

…

SCP: Non-FaaS Platforms

8

Platform

Property

Serverless ETL Cloud-Native Web Applications

Examples AWS Glue Knative

Code PySpark, PyShell jobs Arbitrary code + Dockerfile

Management “Serverless” Spark cluster; Python runtime K8s features + code-to-deploy

Integration Data catalogue Service mash, build, eventing

Application

Pattern

Periodic or ad-hoc Spark jobs

Non-parallel pre/post-processing jobs

Long-running, scale-out services

Linear resource demand per request

Elasticity,

Pay-per-use
Per-job scaling and metering Request-based scaling, incl. to zero

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Deep Learning

○ Interactive Computing

■ Demo

● Conclusions

9

Deep Learning

● Resource-intensive
○ (1) model training, (2) inference

● Frameworks: Tensorflow, Keras, PyTorch, etc.

● Example application: Image Classification
○ Given a model + unlabeled example(s), predict label(s)

○ Compute-intensive, scale-out, can leverage GPUs

○ Accessed via HTTP-based API (returns HTML or JSON)

10

transportation medicine smart cities, security consumer games e-commerce

Kubeflow: Kubernetes-based platform for ML/DL

● Fully managed training jobs (via CRDs)

● Deployment of tfserving

● Jupyter Notebooks

11

SCP for Deep Learning Inference

12

Platform

Property

Kubeflow Our solution (leveraging Knative)

Code No code, using tf-serving Model inference implementation (Python)

Management Life cycle of the model, provisioning of

k8s Deployment serving the model

Enhanced Knative build (code-to-deploy)

Knative serving (versioning, rollout, etc)

Integration K8s ecosystem; model storage K8s, istio

Application

Pattern
Scale-out cluster of long-running tf-

serving containers

Optimization:

- mitigate cold starts by pooling warm containers

- load-balance between CPU and GPU nodes

Elasticity,

Pay-per-use
Regular K8s Deployment (e.g., HPA)

Request-based scaling with Knative

(+optimization), including scaling to zero

Our Architecture

13

Pod

scaling

GPU Nodes

Pod Pod

scaling

Knative

Service 2

PodPodPodPod

Knative

Service 1

Pod

scaling

CPU Nodes

Pod Pod

scaling

Knative

Service 4

PodPodPodPod

Knative

Service 3

Pod

Standby

Pool

GPU-aware

Load Balancer
LB

GPU

Scheduler

Pool

Manager

User

Hybrid Service

Design Details

● Build: Automatically add HTTP interface
○ Augment the provided inference logic with a Django ‘wrapper’, then use Knative build to deploy it

● Load-balancing across GPU-enabled and CPU-only nodes
○ Patch Knative to support GPU resources

○ Based on model properties, indicate in the Knative service template whether a GPU is preferable

○ Two-level scheduling: 1 GPU service and 1 CPU service for each app; fair time-sharing of GPUs

● Maintain a pool of ‘warm’ Pods
○ “Pool” is a ReplicaSet with ‘warm’ (running) Pods

■ Size is adjusted dynamically by the Pool Controller (cluster utilization, estimated demand)

○ Knative scaling logic consumes a warm Pod from the Pool instead of provisioning a new one

■ Pod “migration” is implemented by label manipulation + update of the Istio side-car via API

14

Lessons Learned

● Standardized HTTP wrappers can be used to deliver FaaS-like experience
○ Can leverage existing open source FaaS solutions (e.g., OpenWhisk)

● More fine-grained management of GPU resources would be beneficial
○ The overhead of 2-level scheduling is substantial

● For reuse of ‘warm’ Pods, stronger notion of ‘similarity’ between Pods is needed
○ E.g., same model version?

● Even pool of size 1 significantly reduces the chances of cold starts
○ Instead of pools, can we reuse priority classes and make Knative scaling logic adjust priorities?

15

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Deep Learning

○ Interactive Computing

■ Demo

● Conclusions

16

Interactive Computing

● Iterative invocation of computation-intensive stateful ad-hoc tasks, triggered

by explicit user interaction
○ Often not designed for scale-out

● Example: Data Science using Jupyter Notebook
○ Other examples: Linux Shell (arbitrary shell interactions), IDE (build/execution of code)

17

SCP for Interactive Computing

18

Platform

Property

Kubeflow Jupyter Notebooks Our Solution (with Jupyter, Kubernetes)

Code IPython, Bash, etc Python, Bash (with some restrictions)

Management Provisioning, life cycle of Jupyter

servers and Notebooks

Provisioning and management of resources

used by Notebooks

Integration Data sources Data sources

Application

Pattern

Interactive data science (fixed

resources)

Interactive data science; flexible resource

allocation guided by user input (e.g., magics)

Elasticity,

Pay-per-use

No scaling (fixed resource allocation

per Notebook)

Vertical scaling, including scaling to zero, guided

by user input (+optimization)

Our Architecture

19

J
u
p
y
te

r
-

B
ro

w
s
e
r

Jupyter Server

Runbox

Extension

Notebook Filesystem Data Volume

Pod/RS

Container

Dev Machine
Runbox

Runbox

Controller

sync

cold

save

GC
1 start kernel

4 resize

3 sync

2 create

6 resize

up

5 run cell

7 exec

9 exec

11

12

10 save

8 restore

Kubernetes Cluster

Design Details

● Special Jupyter Kernels, delegating execution to a K8s Pod using `kubectl exec`
○ E.g., scp-python, scp-bash

● State is persisted in a K8s volume attached to the Pod
○ Snapshot/restore in-memory state using `dill` in Python and `set/source` in Bash

○ Also, state is synchronized from/to the local machine via a side-car running unison

● Pod is scaled down (optionally, to zero) when nothing is executed
○ E.g., by scaling the containing ReplicaSet, or using in-place Pod vertical scaling (WIP)

○ Tradeoff between capacity for ‘warm’ containers and latency managed by dedicated controller

● When image changes (e.g., after `apt install`), a new image is committed
○ Using tags for versioning; docker-squash to remove redundant layers

● Magics to control the non-functional properties
○ E.g., resource allocation, whether or not image snapshot is needed, etc

20

Demo

21

Lessons Learned

● Kubernetes originally focused on scale-out workloads, but can also support

scale-up

○ New kind of controller?

● Generic support for application-assisted snapshots could be useful

● For use-cases involving ephemeral compute, API for direct access to volumes

could be useful

22

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Deep Learning

○ Interactive Computing

■ Demo

● Conclusions

23

Conclusions

● “Serverless” = BYOC + elasticity + distruction-free

● “Serverless” derives different requirements for different workloads

● Knative can be enhanced to achieving “serverless” goals for DL inference
○ Aligned with KFserving goals?

● SCP for Interactive Computing requires new capabilities on top of Kubernetes

● Lots of opportunities to deliver ‘serverless’ experience for new workloads!

24

