
SIG-Service Catalog
Introduction

Jonathan Berkhahn - jaberkha@us.ibm.com - @jberkhahn

1

Applications are rarely islands
● Often applications leverage ancillary "Services"

○ E.g. Application stores data in database

● Critical to application's success
○ But developers shouldn't spend their time managing them

2

Services - an overloaded term
● Kubernetes “Services”

○ Applications running in the cluster accessible via DNS discovery

● Platform managed/hosted Services
○ e.g. Object Storage

● External Services - 3rd Party Services
○ e.g. Twillio

3

Access to services can be challenging
● Creating and managing services is non-trivial

○ Duplication of effort across teams
○ Ops team manages it for you on their schedule
○ Managing credentials could be problematic

■ Sent via email, sticky-notes, etc…
■ Where are they stored? Plain text in config files?

○ Each service has its own set of provisioning APIs

● Let’s shift the burden to the Platform via self-service model
○ "Tell us what you need and we'll manage it for you"
○ Service Credentials are protected and provided at runtime

4

What if ...?
$ svcat marketplace

5

 CLASS PLANS DESCRIPTION
+------------+--------------------------+------------------------+
 mysql free Simple SQL
 basic
 enterprise
 mongodb free No-SQL DB

$ svcat provision myDB --class mysql --plan free
$ svcat bind myDB

Credentials (and connection info) in “myDB” secret

The magic
Cluster Admin:
● Service Brokers are registered with Kubernetes

○ Each Broker manages one or more Services
○ Each Service offers a set of variant-QoSs/Plans

● Services are available via a “Marketplace” in Kubernetes

Developer:
● Chooses a Service from the Marketplace
● Kubernetes talks to owning Broker to provision it

and obtain the credentials
● Secret (credentials, connection info) is available to the app

6

$ svcat provision myDB...

$ svcat bind myDB

$ svcat marketplace

Making it all possible
● API between Kubernetes (or CF) and a Service Broker

○ get list of services / provision / deprovision / bind / unbind

● Abstracts the Service Lifecycle APIs

● Service Brokers
○ Manage all aspects of Service's lifecycle
○ User Initiated: Create, Delete, Provide Credentials
○ Automatic: Auto-Scale, Backup, Recovery, QoS, …
○ Hosted anywhere – in or out of the Platform

■ Application is usually unaware

7

Why?
● Application Developers

○ Can focus on their business logic
○ Services managed by the experts
○ Self-service model speeds up CI/CD timelines
○ Platforms can do more for you - e.g. sharing of services across clusters & platforms

● Service Providers
○ Low barrier or entry for new Service Providers
○ Interop: easily integrated into environments that supports the API

■ Kube, CloudFoundry, custom platforms (e.g. IBM Cloud, SAP)
○ With ease of access to services, an increase in their usage ($)

8

Demo

9

YAML all the things
apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceInstance
metadata:
 name: myDB
spec:
 serviceClassName: mysql
 planName: free

apiVersion: servicecatalog.k8s.io/v1beta1
kind: ServiceBinding
metadata:
 name: myDB
spec:
 instanceRef:
 name: myDB

Credentials and connection info in “myDB” secret 10

Service Catalog Summary

11

Why?
● Help developers discover and connect to 3rd party services
● Allowing them to focus on their business logic

○ Ask for the service - connection information provided at runtime

Status
● Kubernetes incubator project
● Can be deployed into any Kubernetes cluster via a Helm chart
● Beta

One last thing about Services
● A service can be just about anything

● Data & Analytics – e.g. DBs, ElasticSearch
● Integration – e.g. Box, Twitter, SendGrid
● Utilities – e.g conversions, speech to text
● Infrastructure – networks, volumes, routing
● DevOps – monitoring, metrics, auto-scaling

12

Questions

13

More information:

● https://svc-cat.io
● https://github.com/kubernetes-incubator/service-catalog
● https://www.openservicebrokerapi.org/
● Deep Dive session: Wednesday, May 22nd, 14:00 - 14:35 (Hall 8.1 G3)
● If you’re interested in contributing, we’ll be hosting weekly SIG meetings at 1

PM PST or 7 AM PST on the first Monday of every month @
https://zoom.us/j/7201225346

https://svc-cat.io
https://github.com/kubernetes-incubator/service-catalog
https://www.openservicebrokerapi.org/
https://zoom.us/j/7201225346

SIG-Service Catalog
Deep-Dive

Jonathan Berkhahn - jaberkha@us.ibm.com - @jberkhahn

14

Agenda
• Open Service Broker API
• Kube-Service Catalog Architecture
• Design Challenges
• Recent Features
• Future Plans

15

Open Service Broker API
• Specification of an API to allow automated deployment, management, and use of

services
○ Cloud-native apps require resources such as stable storage, etc

○ App developers shouldn’t have to care about how the service is managed

○ OSB API abstracts all of this away

• Client side implemented by Service Catalog
○ managed through custom resource types

• Server side implemented by service provider as a ‘broker’
○ get catalog endpoint
○ provision service endpoint
○ bind service endpoint

16

Service Catalog Resource Types
• ClusterServiceBroker

○ A server running somewhere that offers various services, e.g. MySQL Broker

• ClusterServiceClass
○ A category of services offered by a Broker, e.g. MySQL Databases

• ServicePlan
○ A specific type of a Service that a Broker offers, e.g. 100 MB MySQL Databases

• ServiceInstance
○ A single instantiation of a Service/Plan, e.g. Jonathan’s 100 MB MySQL Database

• ServiceBinding
○ A unique set of creds to access a specific Instance, e.g. username/password for Jonathan’s 100

MB MySQL Database

17

The Magic

18

Kube

Broker

2. Retrieve the Catalog of Services
3. Create a new Service Instance

● Platform asks Brokers for Instance

4. Deploy Application
5. Bind Instance to an Application

● Platform asks for new Binding/Creds
6. Access Service from Application

● Using Creds from Binding Secret

1. Register Service Broker

Secret

App

Design Issues - API Aggregation
• CRDs didn’t exist yet, TPRs were buggy

• Didn’t want Service Catalog to have access to the main etcd in Kube for security
reasons

• Solution: implement our own apiserver, use API aggregation to hook it in

• Allows normal interaction, i.e. `kubectl create -f serviceinstance.yml`

19

Design Issues - GUIDs vs. Names
• Kube names are fixed
• OSB API resources have mutable names, and fixed GUIDs
• Service Catalog types use OSB API GUID as the name, and have a mutable

ExternalName field
• svcat cli tool alleviates this pain by referencing human-readable ExternalNames

as much as possible

20

metadata:
name: 12kbac-adad12kbasd // from the broker; immutable
uid: affd6f9b-defe-11e8-87bb-0242ac110007 // generated by Kube

spec:
externalName: mysql // from the broker; can change
externalID: 12kbac-adad12kbasd // same as metadata.name

Design Issues - Broker Synchronization
• Kube isn’t the sole source of truth

• Declarative control flow allows users to manipulate Service Catalog resources
at-will

• Broker can still reject these changes

• Ongoing work to fix these sync issues

21

Release 0.2.0
• Official release of namespaced resources

○ Allows operators to make specific services available to specific users

○ Allow developers to manage their own brokers

• Original resource types available cluster-wide

• Allow Kube operators and users to grant selective access to service
brokers/classes/plans

○ Namespaced brokers

○ Catalog Restrictions
22

CRDs
• Transitioning from an API Server to CRDs

• Adding a mutating webhook server to replicate minor functionality from our old
API Server

• Still a work-in-progress

23

Future Plans
● Improve synchronization between Kube and brokers
● User-Provided Services to allow use of legacy services with service catalog
● Pod presets
● Coming up on 1.0.0

24

Questions

25

More information:

● https://svc-cat.io
● https://github.com/kubernetes-incubator/service-catalog
● https://www.openservicebrokerapi.org/
● If you’re interested in contributing, we’ll be hosting weekly SIG meetings at 1

PM PST or 7 AM PST on the first Monday of every month @
https://zoom.us/j/7201225346

https://svc-cat.io
https://github.com/kubernetes-incubator/service-catalog
https://www.openservicebrokerapi.org/
https://zoom.us/j/7201225346

