
K8s Multi-tenancy WG –
Deep Dive
Sanjeev Rampal, Cisco
Ryan Bezdicek, Cray
https://github.com/kubernetes-sigs/multi-tenancy

Agenda

• Introduction and architecture options

• A Sample Reference Multitenancy Architecture

• Demo

• Q&A, open discussion

Kubernetes Multi-tenancy: What is it ?

• Functionality to allow secure sharing of a Kubernetes cluster by
multiple “Tenants”

• What is a “Tenant” ?
• A subset of resources (compute, network, storage, other) within a single Kubernetes cluster

that has “soft” or “hard” isolation from the rest of the cluster and typically setup for use by a
single team of users

• Why do this ?
• Capex and opex efficiency
• Not doing this can lead to cluster sprawl, stack sprawl, inefficient resource use
• Specially useful when running containers/ K8S directly on Bare Metal servers

Kubernetes Multi-tenancy: What is it ?

• Some relevant side questions:
• Is a Tenant a set of “resources” ? Or a set of “users” ? Or other ?
• Scope of a Tenant: Single cluster ? Or Across Multiple clusters ?
• Do we need to support multiple different degrees of “isolation” between tenants ?
• What aspects of multi-tenancy should be standardized vs left to vendor specific customization ?

• Working assumptions (for now):
• A Tenant is a subset of resources (not users … and btw k8s wants to keep users out

anyway) and its scope is a single cluster for now (multi-cluster in future)
• Multiple potential degrees of isolation with 2 core use cases:

• Soft Multitenancy (Typically an Enterprise use case)
• Use case: Multiple teams within an enterprise that still require secure isolation

• Hard Multitenancy (Typically a “K8S Provider” use case)
• Use case: Service provider class multitenant cluster with “hard isolation” between completely

untrusted and independent tenants

• K8S Multitenancy Working group working on standardization

Multi-tenancy Architecture Options

VM VM VM

Hypervisor

k8s1 k8s2 k8s3

IaaS
vSphere

k8s
cluster
mgmt

T1 T2 T3

BM BM BM BM

BM BMBMBM

ns1 ns2 ns3 ns-a ns-b ns-x ns-yK8S
T1 T2 T3

Super K8S

BM BM BM BM

k8s1 k8s2 k8s3

T1 T2 T3

BM BMBMBM

K8S T1 T2 T3

A

B

C

D

Architecture Options
Multitenancy
Architecture
Option

Resource
efficiency

Level of
Tenant
isolation

Tenant/
application
Config
restrictions

All “Cloud
Native”
architecture

Architecture maturity &
production readiness

A: Multiple K8S
clusters on top of
a Virtualization
IaaS

Low-
medium

High No No (multiple
separate
platforms,
orch.)

Medium-High

B: Namespace
grouping with
Tenant resources

High Medium
-High

Minor
restrictions

Yes Medium

C: Virtual
Kubernetes
Clusters

High High No (?) Yes Low (very early)

D: Core
Kubernetes
change (Tenant as
1st class resource)

High High No (?) Yes (in theory) Very low (design does
not exist)

Initial focus
(+ continue
Investigation
of other
options
in parallel)

Sample conservative reference solution for today

• Hybrid solution (Option A + Option B)
• Dedicated clusters (Option A) for tenants that need hard isolation, privileges
• Shared clusters (Option B) for non-privileged tenants/ applications

• Potential reference behavioral model for option B clusters today
• Tenant containers have no kernel or host level privileges at all (pure user space cloud native

applications)
• Tenants can not provision any cluster scoped k8s resources (e.g. pod security policies) and

may even be restricted from some Namespace scoped k8s resources (e.g. CNI
NetworkPolicies not available to tenants, only cluster admins)

• K8S pods/ resources in one tenant can not communicate with pods in other tenants
• Cluster admin enforces tight control via RBAC, Pod Security policies, CNI network policies
• Move cluster security profile from “tribal knowledge” to curated (and standardized) profiles

Option B: Namespace grouped Tenants

Master nodes

Cluster-Admin
Tenant-A
ns-1, ns-2, ns-3

Tenant-B
ns-4, ns-5

Tenant-C
ns-6, ns-7, ns-8

Worker nodes

Tenant holds 1 or more fully self-contained applications/ services
No direct east-west communication option between tenants except via N-S apis
Strictly non-privileged pods within such tenants
Resource quotas, chargeback and billing at tenant level

Option B: Personas and workflows

Cluster-admin provisions K8S
cluster with 1 (of N)

recommended security profiles

Cluster-admin provisions
Tenant template and

Namespace template objects

Cluster-admin Tenant-admin Tenant-user

Tenant-admin provisions a
new tenant referring to

these templates

Tenant-admin provisions access
controls for the new tenant including
other admins & non-admin user RBAC

Tenant-user provisions
namespace scoped k8s
resources within tenant

Tenant-admin performs CRUD
operations and tenant life cycle

mgmt. on the tenant resource itself

Option B: Secure Multitenancy Profile & Enablers

Profile 1: Bare minimum to get started

• Secure by default Kubernetes configuration
• Disable anonymous authentication
• Disable ABAC, disable local authorization,
• K8S secrets encryption enabled
• CIS Kubernetes benchmarks Level 2

requirements

• Enable RBAC

• Recommended default set of admission
controllers (NodeRestriction, AlwaysPullImages,
PodSecurityPolicy etc)

• Pod Admission controller (PodSecurityPolicy)

• CNI Container Network Policy enabled including
ingress and egress policies

• Docker run-time with Seccomp, AppArmor/
SELinux default profiles

• Best effort multi-tenancy for services
(monitoring, logging etc)

Profile 2: Recommended Phase 2 (WIP @ WG)

• Profile 1 + additional required
enhancements including:

• Dynamic policy engine (e.g. OPA) based
enhancement for
• Access control/ RBAC
• Admission control (beyond Pod Security

policies)
• Advanced policy controls (e.g. ingress route

policies)

• Newer container runtimes & runtime
sandboxing options (CRI-O, containerD w/
Kata runtime, Firecracker/ gVisor)

• Complete solution for multi-tenancy across
monitoring, logging, storage, service mesh ..

• Tenancy across Multi-cluster, multi-cloud

Tenant & NamespaceTemplate CR & Workflow

Kind: Tenant
Metadata:

Name: Tenant-A
Spec:

Namespaces:
ns-1

template t1
ns-2

template t2
Admins:

user1
group2
rbacsubjectfoo

Kind: NamespaceTemplate
Metadata:

Name: t1
Spec:

PodSecurityPolicy P1
NetworkPolicy N1

Kind: NamespaceTemplate
Metadata:

Name: t2
Spec:

PodSecurityPolicy P1
NetworkPolicy N2

NamespaceTemplates
Pre-created by
ClusterAdmin

Tenant CRs created
by any user,
Admins named
explicitly for
subsequent CRUD
operations

Tenant namespaces layout incl shared services

kube-system default

tenant-A
ns-1

tenant-A
ns-2

kube-public

tenant-B
ingress-ctl-1

ingress-ctl-2

mon-svc-1
reg-svc-1

Tenant-A Tenant-B

Option B: Some ongoing works in progress

• Complete multitenancy profile reference models
• Namespace naming conflicts across tenants:
• Tenant controller prototype prefixes tenant name to namespace name

• Resource quota management for tenants across namespaces
• Should tenant users be allowed to create CNI network policies within

their namespaces ?
• Should tenant users be allowed to create a subset of cluster scoped

resources or bindings ?
• Multitenancy for shared services, Prometheus, logging etc

Option C (brief early look): Virtual Kubernetes Clusters

Virtual Cluster Architecture Proposal; F Guo et al; Alibaba Cloud

Demo – Tenant Controller & Workflow PoC

Thanks Yisui Hu!

Sample manifests used in demo

Sample namespace template definition:
apiVersion: tenants.k8s.io/v1alpha1
kind: NamespaceTemplate
metadata:

name: restricted
spec:

templates:
- apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding
metadata:

name: restricted-tenant-psp
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: 00-restricted-psp

subjects:
- kind: Group

apiGroup: rbac.authorization.k8s.io
name: system:serviceaccounts

Sample tenant instance definition
apiVersion: tenants.k8s.io/v1alpha1
kind: Tenant
metadata:

name: tenant-a
spec:

namespaces:
- name: ns-1

template: restricted
- name: ns-2

template: restricted
admins:

- apiGroup: rbac.authorization.k8s.io
kind: Group
name: tenant-a-admins

Takeaways

• Multitenancy standardization still very early although lots of useful

custom solutions exist and should be evaluated

• Contribute your comments/ requirements to Multitenancy WG

• Evaluate initial set of CRD prototypes

• Contribute to development of multitenancy models, profiles, test

criteria, custom controllers, security threat modeling etc

• Kubernetes Multitenancy working group

• Join us on slack/ email/ bi-weekly meetings

• https://github.com/kubernetes/community/tree/master/wg-multitenancy

• Questions/ comments ?

Contact information

Working Group home page
https://github.com/kubernetes/community/tree/master/wg-multitenancy

Sanjeev Rampal
srampal@cisco.com
Github: srampal

Ryan Bezdicek
ryan.j.bezdicek@gmail.com
Github: rjbez17

