

Kubeadm Deep Dive
SIG Cluster Lifecycle

Who are we?

Lubomir I. Ivanov
SIG Cluster Lifecycle Contributor

Open Source Engineer @VMware
@neolit123

* “The information, estimates and evaluations communicated by the speaker during the event and contained in this document (hereinafter "Document") represent the independent opinion of the
speaker/author of the Document, are therefore expressed in a personal capacity and they are in no way attributable and / or referable to the corporate role played in UniCredit Group by the
speaker/author of the Document nor to UniCredit itself”

Fabrizio Pandini
SIG Cluster Lifecycle Contributor

Enterprise Architect @UniCredit*
@fabriziopandini

What is kubeadm

kubeadm kubeadm

control-plane nodes worker nodes

● Someone or something should provide the machines

● kubeadm creates a Kubernetes node on the machine

● Someone or something should install the CNI plugin

Kubeadm is a tool built to provide
best-practice "fast paths" for
creating Kubernetes clusters.

It performs the actions necessary
to get a minimum viable, secure
cluster up and running in a user

friendly way.

Kubeadm: key design takeaways

● The user experience should be simple

● The cluster reasonably secure

● kubeadm’s scope is intentionally limited:

○ Only ever deals with the local filesystem and the

Kubernetes API

○ Agnostic to how exactly the kubelet is run

○ Setting up or favoring a specific CNI network is out of

scope

Photo by Taylor Grote on Unsplash

Recent changes in kubeadm

https://unsplash.com/photos/4_znxV4C46U?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/collections/976213/tech?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Kubeadm is GA!

What does GA really mean?

Stable command-line UX

Command or flag that exists in a GA version must be kept for at least 12 months after

deprecation

Stable underlying implementation

The control plane is run as a set of static Pods, ComponentConfig is used for

configuring installed components (as of today only kubelet, kube-proxy) and

BootstrapTokens are used for the kubeadm join flow

Upgrades between minor versions

kubeadm configuration file

You can now tune almost every part of
the cluster declaratively

apiVersion: kubeadm.k8s.io/v1beta1
kind: InitConfiguration
localAPIEndpoint:
 advertiseAddress: "10.100.0.1"
 bindPort: 6443
nodeRegistration:
 criSocket: "/var/run/crio/crio.sock"
 kubeletExtraArgs:
 cgroupDriver: "cgroupfs"

apiVersion: kubeadm.k8s.io/v1beta1
kind: JoinConfiguration
...

apiVersion: kubeadm.k8s.io/v1beta1
kind: ClusterConfiguration
kubernetesVersion: "v1.12.2"
networking:
 serviceSubnet: "10.96.0.0/12"
 dnsDomain: "cluster.local"
etcd:
 ...
apiServer:
 extraArgs:
 ...
 extraVolumes:
 ...

You can tune also the properties of the
node where kubeadm is executed

kubeadm phases

The “toolbox” interface of kubeadm — Also known as phases.
If you don’t want to perform all kubeadm init tasks, you can instead apply more fine-grained
actions using the kubeadm init phase command

kubeadm init phase

preflight
kubelet-start
certs
 /...
kubeconfig
 /...
control-plane
 /...
etcd
upload-config
 /..
upload-certs [EXPERIMENTAL]
mark-control-plane
bootstrap-token
addon
 /...

kubeadm join phase

preflight
control-plane-prepare
 /download-certs [EXPERIMENTAL]
 /certs
 /kubeconfig
 /control-plane
kubelet-start
control-plane-join
 /etcd
 /update-status
 /mark-control-plane

v.14

v.14

v.13

Kubeadm survey

How would you rate
the overall kubeadm
experience?

Difficult → Easy

Are you running High
Availability clusters
created by kubeadm?

yes

no

may be

Photo by Daniele Levis Pelusi on Unsplash

Deep dive: HA in kubeadm - part 1

Photo by Dan Gold on Unsplash

https://unsplash.com/photos/kEnBCaLjstY?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/m-u31puVzMQ?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Certificates copy in a nutshell

control-plane node #1 control-plane node #2

certificates files in
/etc/kubernetes/pki

ca
front-proxy-ca
etcd-ca
sa

certificates files in
/etc/kubernetes/pki

When creating a K8s HA cluster, certificate authorities and service account signing key

must be shared across all the control-plane nodes in order to make the cluster work

control-plane node #3

certificates files in
/etc/kubernetes/pki

Why should you care?

kubeadm implements support for automating certificate copy across control-plane nodes

It simplify K8s administrators life when creating HA clusters

(no more ssh, scp, scripts for copying certificates)

It is really important to understand how critical parts of the K8s PKI are managed

Why should you care about kubeadm automatic certificates copy?

How it works @ init time

kubeadm init --experimental-upload-certs
...
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
[certs] Generating "sa" key and public key
[certs] Generating "front-proxy-ca" certificate and key
[certs] Generating "etcd/ca" certificate and key
...
[upload-certs] storing the certificates in secret
 "kubeadm-certs" in the "kube-system"
 Namespace
...
Your Kubernetes control-plane has initialized successfully!
...
You can now join any number of the control-plane node running

the following command on each as root:

 kubeadm join 172.17.0.4:6443 --token abcdef...\
 --discovery-token-ca-cert-hash sha256:... \
 --experimental-control-plane \
 --certificate-key 01234567890123456789012345....

certificates files are created in
/etc/kubernetes/pki folder
(as usual)

certificates files that must be
shared across control-plane
nodes are encrypted and
uploaded into the
kubeadm-certs Secret

the kubeadm output provide
instruction for joining another
control-plane node and a
certificate key for getting
access to the uploaded
certificates

2

3

4

Pass the --experimental-upload-certs flag to instruct kubeadm to prepare for certificate copy

1

How it works @ join time

 kubeadm join 172.17.0.4:6443 --token abcdef...\

 --discovery-token-ca-cert-hash sha256:... \
 --experimental-control-plane \
 --certificate-key 01234567890123456789012345....
...
[preflight] Reading configuration from the cluster
...
[download-certs] Downloading the certificates in Secret
 "kubeadm-certs" in the "kube-system"
 Namespace
...
[certs] Using certificateDir folder "/etc/kubernetes/pki"
...

This node has joined the cluster and a new control plane
instance was created!

Pass the --certificate-key to trigger automatic copy of certificates when joining

kubeadm join reads the
kubeadm-certs secret, decrypt it
using the certificate key, and
saves all the shared certs in the
/etc/kubernetes/pki folder

2

1

Key takeaways!

The certificate key must be kept safe!
If someone gets the certificate key and gets access to the kubeadm-certs secret,
someone can destroy your cluster!

As a risk mitigation strategy, the kubeadm-certs secret gets automatically deleted
after two hours. You can upload again certificates and generate a new certificate key
any time by using kubeadm init phase upload-certs

In case you are providing an externally generated CA (without providing keys), you can’t use
automatic copy certificate function; you must provide CA, certificates and kubeconfig files on
all nodes by other means

In case you are using an external etcd cluster, etcd certificates should be provided by you
on the first control-plane node only

At init time, certificates to be shared are encrypted and uploaded into the kubeadm-certs secret
At join time, certificates are downloaded and decrypted using the certificate key

Photo by Daniele Levis Pelusi on Unsplash

Deep dive: HA in kubeadm - part 2

https://unsplash.com/photos/kEnBCaLjstY?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The kubeadm distinctive init-join workflow allows you to dynamically grow your cluster

Dynamic workflow in a nutshell

t1 t2 t3

control-plane
node

worker
nodes

t0

dynamically grow worker
nodes:
kubeadm join

initialize your cluster:
kubeadm init

Because dynamically growing control-plane nodes requires some additional
considerations

Because HA in kubeadm is implemented by dynamically growing the control-plane
nodes (using the same UX pattern already used for worker nodes)

Why should you care about kubeadm dynamic workflow (again)?

Why should you care?

control-plane
node

t1 t4 ...

dynamically grow
control-plane nodes:
kubeadm join
--experimental-control-plane

HA
control-plane

The external load balancer

In order to dynamically grow the control-plane nodes you need an external load balancer

worker
nodes

t3 t5 t6

external
load balancer

dynamically grow
worker nodes:
kubeadm join

initialize your cluster:
kubeadm initt0

Stacked etcd

In case you are not providing an external etcd cluster, kubeadm creates an etcd node stacked on
the same node where the control-plane exist. Also the stacked etcd cluster dynamically grows

t1 tx ...t0

node 1 node 2 node 3 ...

kubeadm join
--experimental-control-plane
dynamically grows
the stacked etcd cluster

HA
control-plane

etcd cluster

Key takeaways!
In order to setup an HA control plane, Before you need an external load balancer
Then init the cluster
After join control-plane nodes and worker nodes in any order/at any time

Api-server certificate, etcd server/peer and other certificates are node specific.
You cannot copy them around.

Each api server instance is connected **only** to the local etcd member.
if an etcd member fails on a node, the entire control-plane on that node fails.

In case you are not providing an external etcd, a stacked etcd cluster is
automatically generated and it spans across all the control-plane nodes

If you want to preserve the dynamic workflow feature, don’t override “addresses”
fields for kube-apiserver or etcd (e.g. --advertise-address or listen-client-urls) .

Photo by Math on Unsplash

Bonus pack

https://unsplash.com/photos/kPOia9E2dNI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/camera?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The starting point

$ kubeadm init
...
[certs] Using certificateDir folder

"/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
...
[kubeconfig] Using kubeconfig folder "/etc/kubernetes"
[kubeconfig] Writing "admin.conf" kubeconfig file
...
[control-plane] Using manifest folder

"/etc/kubernetes/manifests"
[control-plane] Creating static Pod manifest for

"kube-apiserver"
...
[etcd] Creating static Pod manifest for local etcd in

"/etc/kubernetes/manifests"
...
[addons] Applied essential addon: CoreDNS
...
Your Kubernetes control-plane has initialized

successfully!

Creating a single control-plane node with kubeadm => create local artifacts + in-cluster artifacts

certificates files in
/etc/kubernetes/pki

kubeconfig files in
/etc/kubernetes

static pod manifests in
/etc/kubernetes/manifest

1

2

3

4

kubeadm ConfigMap
+ core addons + RBAC rules,
bootstrap-tokens
are deployed in the
K8s cluster

The grand theory of HA in kubeadm

control-plane #1 control-plane #2

CAs & sa must be
shared across all
the control-plane
nodes

Generate only node
specific certificates

Add the new etcd
member to the existing
etcd cluster

Adding a second control-plane, requires again to create certificates, kubeconfig, manifests, but….

Generate kubeconfig
files, except kubelet.conf
(TLS bootstrap)

1 2

3

5

Generate the static pod
manifests

4

Resources deployed in
the K8s cluster at init
time are already shared
across all control plane
nodes!

History of HA in kubeadm

v1.11 Split cluster-wide configuration from node configurations

Implementing HA took some time and an incremental approach…but finally we are at the end of it !

v1.15 Test, tests, tests + (hopefully) craduate to beta!

v1.12

Join control plane
(with manual copy of
certificates and only for
cluster with external etcd)

manual copy of
certificates

(external ETCD) v1.13
Join control plane
with stacked etcd
(with manual copy of
certificates)

v.14

automatic copy
of certificates
(experimental)

 Roadmap

Photo by Samuel Zeller on Unsplash

Coming soon… 2019 roadmap

https://unsplash.com/photos/VK284NKoAVU?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/future?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The kubeadm roadmap

● HA support in kubeadm to Beta!
● kubeadm config v1beta2 (small improvements)
● (Bring back) support for Windows nodes in kubeadm
● Consolidate story about certs management (external CA, renewal, cert location)
● Improve our CI signal, mainly for HA and upgrades
● Cleanup how K8s artifacts are built and installed
● Evaluate usage of Kustomize for allowing advanced customization
● …

How can you Contribute

● Smaller core group of active maintainers
○ Tim, Lubomir, Ross, Jason, Liz, Chuck (VMWare)
○ Marek, Rafael (SUSE)
○ Alex, Ed (Intel)
○ Luxas, Fabrizio, Yago (Other/Independent)

● EU timezone friendly!
● Take a look at the SIG Cluster Lifecycle New Contributor Onboarding video
● Look for “good first issue”, “help wanted” and “sig/cluster-lifecycle” labeled issues in our

repositories (in k/k or in various project repository)
● Join us on slack #kubeadm #sig-cluster-lifecycle
● We have “Kubeadm Office Hours” every week
● Contributing to SIG Cluster Lifecycle documentation

https://www.youtube.com/watch?v=Bof9aveB3rA
https://kubernetes.slack.com/messages/C2P1JHS2E/
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://docs.google.com/document/d/1eq0mWjnyQiDXhEGPU7tulbnDuvkaUehSz7u3NRxxpc8/edit

Logistics

● Follow the SIG Cluster Lifecycle YouTube playlist
● Check out the meeting notes for our weekly office hours meetings
● Join #sig-cluster-lifecycle, #kubeadm channels
● Check out the kubeadm setup guide, reference doc and design doc
● Read how you can get involved and improve kubeadm!

https://www.youtube.com/watch?v=I9764DRBKLI&list=PL69nYSiGNLP29D0nYgAGWt1ZFqS9Z7lw4
https://docs.google.com/document/d/1deJYPIF4LmhGjDVaqrswErIrV7mtwJgovtLnPCDxP7U/edit
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://kubernetes.slack.com/messages/C2P1JHS2E/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/implementation-details/
https://github.com/kubernetes/kubeadm/blob/master/docs/release-cycle.md

SIG cluster lifecycle roadmap

Cluster API

cluster-addons

kubeadm

etcdadmC
om

po
ne

nt
 C

on
fig

K8s cluster Provisioners

We need your help!
There is still a lot of work to do in onder to get the full puzzle in place!

GA Beta Alpha Pre-Alpha

Photo by Nik Shuliahin on Unsplash

Questions and Answers

Thank You!
Q & A

https://unsplash.com/photos/cp1k4Cmx4OE?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/question?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

