e L.""
M

CloudNativeCon

Eur » 20190
curope cui>

Co-Evolution of Kubernetes
and GCP Networking

Purvi Desai
Tim Hockin

Why did
Kubernetes take

off?
e Focused on app owners and app
problems

e “Opinionated enough”

e Assumes platform implementations
will vary

e Designed to work with popular OSS

e Follows understood conventions
(mostly)

Y Google Cloud

Networking is at
the heart of
Kubernetes

Almost every k8s-deployed app
needs it

Networking can be complex

Details vary a lot between
environments

App developers shouldnt have to be
networking experts

Y Google Cloud

In the beginning Lineage of Borg

Survey of Container Networking

Y Google Cloud

Borg model

10.240.0.1 10.240.0.2

& Google Cloud

Borg model

10.240.0.1

& Google Cloud

Borg model

cgroup: allow 3306

cgroup: allow 9376

10.240.0.1

& Google Cloud

Original docker model

Container A

netns: 172.16.1.12

10.240.0.1 10.240.0.2

& Google Cloud

Kubernetes
network model

Y Google Cloud

Users should never have to worry
about collisions that they
themselves didn’t cause

App developers shouldn’t have to
be networking experts

A real IP for every
Pod

e Pod IPs are accessible from other
pods, regardless of which VM they
are on

e No brokering of port numbers

Y Google Cloud

Kubernetes model

Container A

netns: 172.16.1.1

netns: 172.16.2.1

B:172.16.1.2

netns: 172.16.1.12

10.240.0.1 10.240.0.2

& Google Cloud

Proof of concept Early Experiments on GCP

Y Google Cloud

Cloud networking

e VM Centric

e Containers are not really a part of
design space

e What were the possibilities?

Y Google Cloud

| vee ©

O wm

O m

Found a toehold

e The “Routes” API
e Every VM claims to be a router

e Disable IP spoofing protection

Y Google Cloud

Route 10.1.1.0/2¢ to

Route 10.1.2.0/2¢ to

Node A Node 8
N\ L e @
6KE @ IP Spoofing OF @ IP Spoofing OF
/Voa/e A ebro /‘/0&{8 B cbro
Pod Pod Pod Pod Pod Pod

Pod IP Space = 10.1.1.0/2¢

Pod IP Space = 10.1.2.0/24

The beginning of
co-evolution

e Foundations were set
e UX was good - IP-per-Pod worked!

e We were able to push limits to 100
routes

e Does anyone remember how many
nodes Kubernetes 1.0 supported?

Y Google Cloud

Co-evolution
Journey Cluster Networking

Services and L4 Load Balancers

L7 load balancer

Y Google Cloud

Cluster Networking
Routes model

e Drove major architectural changes
to scale GCP’s Routes subsystem

e Rapid scaling over 2 years

& Google Cloud

%4

%

What’s the catch?

e |P spoofing disabled

e Semi-hidden allocations - potential
for collisions with future uses of
IPs

e Overlapping routes caused real
confusion, hard to debug

Y Google Cloud

xy2/24 —7 Node A

GKE

Node A

IP Spoofing

X

x.y.2.0/24

VPC

We can do better Better integration with other
products

Hard to reason about & debug

Need a deeper concept: Alias IPs

Y Google Cloud

Alias IPs &
integrated
networking

e Allocate range for nodes

Y Google Cloud

‘ Node

range

oke | © O

Node A Node B

-
-
-
-

7/
/ _
7 ’/’
-
// ,,"’
// ,”’
/. _-="
vec €

RFEC-1918

o Node Pod Servicee
Alias IPs & @®.. O, range

integrated
networking
e Allocate range for nodes @
e Allocate ranges for pods and GKE @ @
services Node A Node 8

-
-
-

/ -~

-

5 Google Cloud vec € _—- ‘——l'

RFEC-1918

o Nod. Pod Service
Alias IPs & ®.. © g

range range
integrated
networking
e Allocate range for nodes @
e Allocate ranges for pods and ke | O O
services Node A Node 8

e Carve off per-VM pod-ranges
automatically as alias IPs

e SDN understands Alias IPs

e Per-node IPAM is in cloud

S -~ L

7 - -
\ ’f ’/

/ \ - -

>
-
\ - /’
-

’ -
/ \ -
’ _-2
/ - \
- \

5 Google Cloud vec € _— ———|'

RFEC-1918

o Node Pod Servicee
Alias IPs & O O

range range range
integrated
networking
e Allocate range for nodes @
e Allocate ranges for pods and GKE @ @
services Node A Node 8
e Carve off per-VM pod-ranges
automatically as alias IPs
e SDN understands Alias IPs Pod| Pod Pod Pod Pod Pod
<1 - _- <J 7 _-
e Per-node IPAM is in cloud, on-node RS e \~*’ -7
IPAM is on-node 7 ﬁ—* = _-
/ \ — == —= -

-
-
\ - -

e No VPC collisions, now or future

y -
/ \ -
y _-"
/ ,%’ \
”’ \

5 Google Cloud vec € _— ‘——|'

RFEC-1918

Services &

load-balancers LB support centered around
clouds

Implemented by the cloud
provider controller

Y Google Cloud

VIP Like LBs

e LB Delivers Packet from original
client IP to original VIP

e |PTables are programmed to capture
the VIP just like a Cluster IP

e |PTables takes care of the rest
e GCP’s Network LB is VIP-Like

e LB only knows Nodes, k8s translates
to Services and Pods

Y Google Cloud

cre: client IP

det: VIP.port

~_

cre: client IP

det: VIP:Porf

J

VIP Like (8B

Node

A
/

iptables

Y

Pod

/

Pod

Pod

Node 8

Pod

Pod

Pod

Proxy Like LBs

e LB acts as proxy and delivers packet
from proxy to Node or Pod

e AWS's ELB is Proxy-Like

e Again, LBs only understand Nodes,
not Pods or Services

e How to indicate which Service?

Y Google Cloud

ere: client IP
det: VIP.port

~_

| cre: (8 IP (pool)

det: node IP:?7?

J

Proxy Like (B

o o o o

Pod

Pod

Pod

Node 8

Pod

Pod

Pod

Introduction of
NodePorts

e Allocate a static port across all
nodes, one for each LB’ed Service

e Simple to understand model

e Portable: No external dependencies

Y Google Cloud

ere: client IP
det: VIP.port

~_

| cre: (8 IP (pool)
dst: node IP:nodeport

Proxy Like (B

Node A

Pod

Pod

Node 8

:3123¢9

Pod

Pod

Pod

What about portability?

apiVersion: vi1 apiVersion: vl
kind: Service kind: Service
metadata: metadata:
name: frontend name: frontend
spec: spec:
type: LoadBalancer type: LoadBalancer
ports: clusterIP: 10.15.251.118
- port: 80 ports:
selector: - port: 80
app: guestbook protocol: TCP
tier: frontend targetPort: 80
nodePort: 30669
selector:

app: guestbook
tier: frontend
status:
loadBalancer:
ingress:
- ip: 35.193.47.73

& Google Cloud

Ingress: L7 LB All (or almost) L7 LBs are proxy like

NodePorts are a decent starting
point

Y Google Cloud

Ingress

Portable L7 LB Abstraction

Y Google Cloud

Traf{\fc

\V\Sf'(’. $S

Othey
4\”"“3/3”0\“ S0 W\\j&main -Cnm/ bar \e

L \

Service Sevvice Service

N / N /]
M@ \.\)_\2&_\)_‘2& MM?OA

Kubernetes cluster

Advancing LBs -

Load Balancer

From e i -

Instance Group

v v

Two levels of load balancing
Inaccurate cloud health checks

! 1
! '
' '
! !
' 1
! '
! i
! '
! '
' '
. ' - i :
Inaccurate Load Balancing | iptables ,
' '
! 1
! '
' 1
' '
! '
! 1
! 1
! '
! '
! '
! '
! '

Multiple Network hops
Loss of LB features

Y Google Cloud

Example: Cookie
Affinity
e A feature of GCP's HTTP LB

e LB returns a cookie to client

e Ensures repeated connections go to
same backend

Y Google Cloud

Client

(8

Node A

Pod

Pod

Pod

Node 8

Pod

Pod

Pod

Example: Cookie
Affinity
e A feature of GCP's HTTP LB

e LB returns a cookie to client

e Ensures repeated connections go to
same backend

Y Google Cloud

Client

first connection
(8
Node A Node 8
iptables
Pod Pod Pod Pod Pod Pod

Client

response with cookie for

. Node A

Example: Cookie Fo—.
Affinity 8

e Afeature of GCP's HTTP LB

e LB returns a cookie to client

e Ensures repeated connections go to Node A Node 8

same backend iptables
Pod Pod Pod Pod Pod Pod

Y Google Cloud

Client

cecond connection goes to

Node A, becavse of cookie

Example: Cookie
Affinity 8

e A feature of GCP's HTTP LB

e LB returns a cookie to client

e Ensures repeated connections go to Node A Node 8
same backend iptables

Pod Pod Pod Pod Pod Pod

Y Google Cloud

Example: Cookie
Affinity
e A feature of GCP's HTTP LB

e LB returns a cookie to client

e Ensures repeated connections go to
same backend

e Second hop is not cookie-aware

Y Google Cloud

Client

(8

Node A

Pod

iptables

Pod

Pod

Node 8

Pod

Pod

Pod

Why can’t we load
balance to Pod IPs?

Y Google Cloud

Client

(8

Node A

Pod

Pod

Pod

Node 8

Pod

Pod

Pod

>

Load Balancer

Network Endpoint --------------mmoeommo e
Groups in GCE LB

e Now HTTP LB can target pod IPs,

Network Endpoint Group (NEG)

not just VMs
e Features like cookie affinity “Just

Work”

h 4 h 4 v
e Balances the load without
Pod 1 Pod 2 Pod 3 Pod 4 Pod 5
downsides of a second hop @ @ @ @ @
VM1 VM2

Y Google Cloud

Containers as first
Class GCP SDN
endpoints

Y Google Cloud

Alias IPs made Pods as first class
endpoint on VPC

Network endpoint groups made
load balancing for containers as
efficient and feature rich as VMs

Problems when

load-balancing to

Pods Programming external LBs is
slower than iptables

Possible to cause an outage by
rolling update going faster than LB

Y Google Cloud

Rolling Update

Y Google Cloud

ReplicaSet

- name: my-app-v1

- replicas: 3
- gelector:

- app: MyApp

- version: v1

Pod

@

ReplicaSet
- name: my-app-v2

Pod

Pod

(8 - veplicas: 1
f - celector:
4
2l - app: MyApp
‘1

@ - version: v2

Rolling Update

e Pod Liveness: state of
application in pod -a live or

not

Pod Readiness : ready to

[]
receive traffic

Y Google Cloud

ReplicaSet
- name: my-app-v2

ReplicaSet
- name: my-app-v7 .
- replicas: 3 (8 - replicas: 1
- celector: , R - celector:
- app: MyApp i - app: MyApp
- version: v1 , ;o @ - version: v2

// // ll

/7 ! I

// /I !

// ,' "

// / 'l i
S Pod - five
/ 1
/'/ / / p00(- keady
/ 1
Ao / Infra-?
// / 1 |
’ /I 1
// / ,’
// /I I
¥ Y 14
p06{ Pad pod po o

Wait for
Infrastructure?

e LB not programmed but Pod
reports ready

e Pod from previous replicaset
removed.

e Capacity reduced !.

Y Google Cloud

/Qe,b/ica.g'et

- hame: my-app-v7

- replicas: 3
- gelector:

- app: MyApp

- version: v1

Pod

@

ReplicaSet

Pod

@

Pod

- name: my-app-v2
- veplicas: 1
- celector:

- app: MyApp

- version: v2

Pod - live
Pod - ready
| Infra-7?

Pod Ready ++

- New state in Pod life cycle to
wait - Pod Ready ++

Y Google Cloud

,ee,b/ica.g'et

- hame: my-app-v7

- replicas: 3
- gelector:

- app: MyApp

- version: v1

Pod

@

Pod

ReplicaSet
- name: my-app-v2
- veplicas: 1
- celector:

- app: MyApp

@ - version: v2

Pod

Pod - live
Pod - ready
| Infra - wait

Pod Ready ++

- New state in Pod life cycle to
wait - Pod Ready ++

Y Google Cloud

,ee,b/ica.g'et
- hame: my-app-v7
- replicas: 3
- celector:

- app: MyApp
- version: v1 @

Pod

Pod

ReplicaSet
- name: my-app-v2
- veplicas: 1
- celector:

- app: MyApp

@ - version: v2

Pod

Pod -live
Pod - ready
| Infra - ready

What about all the

features? Every LB has features not
expressed by Kubernetes

Principle: Most implementations
must be able to support most
features

Y Google Cloud

Express GCP’s LB
features

e CRD totherescue
o Linked from Service
o Implementation specific

e BackendConfig
o Allows us to expose features
to GCP users without
bothering anyone else

Y Google Cloud

Ingrece

BackendConfig X

6CLB

L

Service X

Service Y

BackendConfig Y

BackendConfig

apiVersion: vl
kind: Service
metadata:
name: my-service
annotations:

beta.cloud.google.com/backend-config:

"{"ports": {"http":"config-http"}}"
spec:

type: NodePort
selector:

app. my-app
ports:
- name: http

port: 80

targetPort: 80860

Y Google Cloud

apiVersion: cloud.google.com/vlbetal
kind: BackendConfig
metadata:
name: config-http
spec:
cdn:
enabled: true
cachePolicy:
includeHost: true
includeProtocol: true
iap:
enabled: false
timeoutSec: 5
sessionAffinity:
affinityType: GENERATED COOKIE
affinityCookieTtlSec: 180

Mistakes in
Abstractions? Too Flexible?

Not Flexible Enough?

Too Monolithic?

Y Google Cloud

Too flexible?

e Service is a very flexible abstraction
o Target ports
o Named ports

e Makes it hard to implement in some fabrics
o DSRis incompatible with port remapping

e Inspired by docker’s port-mapping model

e Hindsight: should probably have made it simpler

Y Google Cloud

VIP :80 -> pod :htt

Pod X
http = 8080

Pod Y
http = £000

Pod Z
http = £001

Not flexible
enough?

e Service is not flexible enough in other ways
o Can't forward ranges
o Can't forward a whole IP

e Makes it hard for some apps to use services
o Dynamic ports
o Large numbers of ports

Y Google Cloud

VIP :80 -> pod :8080
VIP:4943 -> pod :8443

Pod X
:8080
8993

Pod Y
85080
8993

Pod Z
5080
:5993

Too monolithic?

e Service APl is monolithic and complex
o type’ field does not capture all
variants
o Headless vs VIP
o Selector vs manual

e External LB support is built-in but primitive
o Should have had readiness gates
long ago
o No meaningful status

Y Google Cloud

Looking ahead

Y Google Cloud

Want more?

Come to the SIG-Network Intro &
Deep-Dive on Thursday!

Y Google Cloud

Thank You!

Purvi Desai
@purvid

Tim Hockin
@thockin

Y Google Cloud

