
Purvi Desai
Tim Hockin

Co-Evolution of Kubernetes
and GCP Networking

Why did
Kubernetes take
off?
● Focused on app owners and app

problems

● “Opinionated enough”

● Assumes platform implementations
will vary

● Designed to work with popular OSS

● Follows understood conventions
(mostly)

Networking is at
the heart of
Kubernetes
● Almost every k8s-deployed app

needs it

● Networking can be complex

● Details vary a lot between
environments

● App developers shouldn’t have to be
networking experts

In the beginning Lineage of Borg

Survey of Container Networking

Borg model

10.240.0.1 10.240.0.2

Task A
3306

Task B

Task C

3306
8000

Borg model

10.240.0.1

Task A
3306

Task B

3306

3306

Borg model

10.240.0.1

cgroup: allow 3306

Task A
3306

cgroup: allow 9376

Task B

3306

3306

10.240.0.2

netns: 172.16.1.1

Container C

8000

10.240.0.1

netns: 172.16.1.1

Container A

80

netns: 172.16.1.12

B: 172.16.1.2

Original docker model

9376

11878

DNAT

SNAT

SNAT

DNAT

Kubernetes
network model Users should never have to worry

about collisions that they
themselves didn’t cause

App developers shouldn’t have to
be networking experts

A real IP for every
Pod
● Pod IPs are accessible from other

pods, regardless of which VM they
are on

● No brokering of port numbers

10.240.0.2

netns: 172.16.2.1

Container C

8000

10.240.0.1

netns: 172.16.1.1

Container A

80

netns: 172.16.1.12

B: 172.16.1.2

Kubernetes model

Proof of concept Early Experiments on GCP

Cloud networking
● VM Centric

● Containers are not really a part of
design space

● What were the possibilities?

VPC

VM VM

Found a toehold
● The “Routes” API

● Every VM claims to be a router

● Disable IP spoofing protection

VPC

Node A

GKE

cbr0

Pod IP Space = 10.1.1.0/24

Pod Pod Pod

IP Spoofing Off

cbr0

IP Spoofing Off

Pod Pod Pod

Node B

Pod IP Space = 10.1.2.0/24

Route 10.1.1.0/24 to
 Node A

Route 10.1.2.0/24 to
 Node B

The beginning of
co-evolution
● Foundations were set

● UX was good - IP-per-Pod worked!

● We were able to push limits to 100
routes

● Does anyone remember how many
nodes Kubernetes 1.0 supported?

Co-evolution
Journey Cluster Networking

Services and L4 Load Balancers

L7 load balancer

In 2
years

Cluster Networking
Routes model
● Drove major architectural changes

to scale GCP’s Routes subsystem

● Rapid scaling over 2 years

● IP spoofing disabled

● Semi-hidden allocations - potential
for collisions with future uses of
IPs

● Overlapping routes caused real
confusion, hard to debug

What’s the catch?
x.y.z/24 Node A

x.y.z.0/24

VPC

GKE
IP Spoofing

x.y.z.0/24

Node A

We can do better Better integration with other
products

Hard to reason about & debug

Need a deeper concept: Alias IPs

● Allocate range for nodes

Alias IPs &
integrated
networking

Node A
GKE

Node B

VPC
RFC-1918

Node
range

● Allocate range for nodes

● Allocate ranges for pods and
services

Alias IPs &
integrated
networking

Node A
GKE

Node B

VPC
RFC-1918

Node
range

Pod
range

Services
range

● Allocate range for nodes

● Allocate ranges for pods and
services

● Carve off per-VM pod-ranges
automatically as alias IPs

● SDN understands Alias IPs

● Per-node IPAM is in cloud

Alias IPs &
integrated
networking

Node A
GKE

Node B

VPC
RFC-1918

Node
range

Pod
range

Services
range

● Allocate range for nodes

● Allocate ranges for pods and
services

● Carve off per-VM pod-ranges
automatically as alias IPs

● SDN understands Alias IPs

● Per-node IPAM is in cloud, on-node
IPAM is on-node

● No VPC collisions, now or future

Alias IPs &
integrated
networking

Node A
GKE

Pod Pod Pod

Node B

VPC
RFC-1918

Pod Pod Pod

Node
range

Pod
range

Services
range

Services &
load-balancers LB support centered around

clouds

Implemented by the cloud
provider controller

● LB Delivers Packet from original
client IP to original VIP

● IPTables are programmed to capture
the VIP just like a Cluster IP

● IPTables takes care of the rest

● GCP’s Network LB is VIP-Like

● LB only knows Nodes, k8s translates
to Services and Pods

VIP Like LBs

Node A

Pod Pod Pod

Node B

Pod Pod Pod

VIP Like LB

src: client IP
dst: VIP:port src: client IP

dst: VIP:port

iptables

● LB acts as proxy and delivers packet
from proxy to Node or Pod

● AWS’s ELB is Proxy-Like

● Again, LBs only understand Nodes,
not Pods or Services

● How to indicate which Service?

Proxy Like LBs

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Proxy Like LB

src: client IP
dst: VIP:port src: LB IP (pool)

dst: node IP:???

?????

● Allocate a static port across all
nodes, one for each LB’ed Service

● Simple to understand model

● Portable: No external dependencies

Introduction of
NodePorts

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Proxy Like LB

:31234 :31234

src: client IP
dst: VIP:port src: LB IP (pool)

dst: node IP:nodeport

What about portability?

apiVersion: v1

kind: Service

metadata:

 name: frontend

spec:

 type: LoadBalancer

 clusterIP: 10.15.251.118

 ports:

 - port: 80

 protocol: TCP

 targetPort: 80

 nodePort: 30669

 selector:

 app: guestbook

 tier: frontend

status:

 loadBalancer:

 ingress:

 - ip: 35.193.47.73

apiVersion: v1

kind: Service

metadata:

 name: frontend

spec:

 type: LoadBalancer

 ports:

 - port: 80

 selector:

 app: guestbook

 tier: frontend

LoadBalancer

NodePort

ClusterIP

Ingress: L7 LB All (or almost) L7 LBs are proxy like

NodePorts are a decent starting
point

Portable L7 LB Abstraction

Ingress

● Two levels of load balancing
● Inaccurate cloud health checks
● Inaccurate Load Balancing
● Multiple Network hops
● Loss of LB features

Advancing LBs
From

● A feature of GCP’s HTTP LB

● LB returns a cookie to client

● Ensures repeated connections go to
same backend

Example: Cookie
Affinity

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Client

LB

● A feature of GCP’s HTTP LB

● LB returns a cookie to client

● Ensures repeated connections go to
same backend

Example: Cookie
Affinity

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Client

LB

iptables

first connection

● A feature of GCP’s HTTP LB

● LB returns a cookie to client

● Ensures repeated connections go to
same backend

Example: Cookie
Affinity

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Client

LB

iptables

response with cookie for
Node A

● A feature of GCP’s HTTP LB

● LB returns a cookie to client

● Ensures repeated connections go to
same backend

Example: Cookie
Affinity

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Client

LB

iptables

second connection goes to
Node A, because of cookie

● A feature of GCP’s HTTP LB

● LB returns a cookie to client

● Ensures repeated connections go to
same backend

● Second hop is not cookie-aware

Example: Cookie
Affinity

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Client

LB

iptables

Why can’t we load
balance to Pod IPs?

Node A

Pod Pod Pod

Node B

Pod Pod Pod

Client

LB

● Now HTTP LB can target pod IPs,
not just VMs

● Features like cookie affinity “Just
Work”

● Balances the load without
downsides of a second hop

Network Endpoint
Groups in GCE LB

Containers as first
Class GCP SDN
endpoints

Alias IPs made Pods as first class
endpoint on VPC

Network endpoint groups made
load balancing for containers as
efficient and feature rich as VMs

Problems when
load-balancing to
Pods Programming external LBs is

slower than iptables

Possible to cause an outage by
rolling update going faster than LB

Rolling Update

Pod Pod Pod

ReplicaSet
 - name: my-app-v1
 - replicas: 3
 - selector:
 - app: MyApp
 - version: v1

LB

ReplicaSet
 - name: my-app-v2
 - replicas: 1
 - selector:
 - app: MyApp
 - version: v2

Rolling Update

Pod Pod Pod Pod

ReplicaSet
 - name: my-app-v1
 - replicas: 3
 - selector:
 - app: MyApp
 - version: v1

LB

ReplicaSet
 - name: my-app-v2
 - replicas: 1
 - selector:
 - app: MyApp
 - version: v2

Pod - live
Pod - ready
Infra - ?

● Pod Liveness : state of
application in pod -a live or
not

● Pod Readiness : ready to
receive traffic

● LB not programmed but Pod
reports ready

● Pod from previous replicaset
removed.

● Capacity reduced !.

Wait for
Infrastructure?

Pod Pod Pod

ReplicaSet
 - name: my-app-v1
 - replicas: 3
 - selector:
 - app: MyApp
 - version: v1

LB

Pod - live
Pod - ready
Infra - ?

ReplicaSet
 - name: my-app-v2
 - replicas: 1
 - selector:
 - app: MyApp
 - version: v2

- New state in Pod life cycle to
wait - Pod Ready ++

Pod Ready ++

Pod Pod Pod

ReplicaSet
 - name: my-app-v1
 - replicas: 3
 - selector:
 - app: MyApp
 - version: v1

LB

ReplicaSet
 - name: my-app-v2
 - replicas: 1
 - selector:
 - app: MyApp
 - version: v2

Pod - live
Pod - ready
Infra - wait

- New state in Pod life cycle to
wait - Pod Ready ++

Pod Ready ++

Pod Pod Pod

ReplicaSet
 - name: my-app-v1
 - replicas: 3
 - selector:
 - app: MyApp
 - version: v1

LB

ReplicaSet
 - name: my-app-v2
 - replicas: 1
 - selector:
 - app: MyApp
 - version: v2

Pod -live
Pod - ready
Infra - ready

What about all the
features? Every LB has features not

expressed by Kubernetes

Principle: Most implementations
must be able to support most
features

● CRD to the rescue
○ Linked from Service
○ Implementation specific

● BackendConfig
○ Allows us to expose features

to GCP users without
bothering anyone else

Express GCP’s LB
features

Ingress

Service X Service YBackendConfig X BackendConfig Y

GCLB

apiVersion: cloud.google.com/v1beta1

kind: BackendConfig

metadata:

 name: config-http

spec:

 cdn:

 enabled: true

 cachePolicy:

 includeHost: true

 includeProtocol: true

 iap:

 enabled: false

 timeoutSec: 5

 sessionAffinity:

 affinityType: GENERATED_COOKIE

 affinityCookieTtlSec: 180

apiVersion: v1

kind: Service

metadata:

 name: my-service

 annotations:

 beta.cloud.google.com/backend-config:

 '{"ports": {"http":"config-http"}}'

spec:

 type: NodePort

 selector:

 app: my-app

 ports:

 - name: http

 port: 80

 targetPort: 8080

BackendConfig

Mistakes in
Abstractions? Too Flexible?

Not Flexible Enough?

Too Monolithic?

● Service is a very flexible abstraction
○ Target ports
○ Named ports

● Makes it hard to implement in some fabrics
○ DSR is incompatible with port remapping

● Inspired by docker’s port-mapping model

● Hindsight: should probably have made it simpler

Too flexible?

VIP :80 -> pod :http

Pod Y
http = 8000

Pod X
http = 8080

Pod Z
http = 8001

● Service is not flexible enough in other ways
○ Can’t forward ranges
○ Can’t forward a whole IP

● Makes it hard for some apps to use services
○ Dynamic ports
○ Large numbers of ports

Not flexible
enough?

VIP :80 -> pod :8080
VIP:443 -> pod :8443

Pod Y
:8080
:8443

Pod X
:8080
:8443

Pod Z
:8080
:8443

● Service API is monolithic and complex
○ `type` field does not capture all

variants
○ Headless vs VIP
○ Selector vs manual

● External LB support is built-in but primitive
○ Should have had readiness gates

long ago
○ No meaningful status

Too monolithic?

Looking ahead

Want more?

Come to the SIG-Network Intro &
Deep-Dive on Thursday!

Thank You!

Purvi Desai
@purvid

Tim Hockin
@thockin

