ContactForceT_SDSNonlinear class
Contents
Description
This is a sub-class of the ContactForceT class for the implementation of the Nonlinear Spring-Dashpot-Slider tangent contact force model.
This model assumes that the tangent contact force has an elastic component , provided by a spring, a viscous component
, provided by a dashpot, and a friction component
, provided by a slider, which limits the total force according to Coulomb law.
The friction coefficient must be provided.
The elastic and viscous components can be camputed by different formulations:
- DD (Di Renzo & Di Maio):
- LTH (Langston, Tuzun, Heyes):
The tangent damping coefficient must be provided.
- ZZY (Zheng, Zhu, Yu):
The tangent damping coefficient must be provided.
- TTI (Tsuji, Tanaka, Ishida):
The tangent damping coefficient must be provided.
Notation:
: Tangent direction between elements
: Normal overlap
: Tangent overlap
: Time rate of change of tangent overlap
: Normal contact force vector
: Effective mass
: Effective contact radius
: Effective Young modulus
: Effective shear modulus
: Effective Poisson ratio
: Tangent overlap when sliding starts
References:
classdef ContactForceT_SDSNonlinear < ContactForceT
Public properties
properties (SetAccess = public, GetAccess = public) % Formulation options formula uint8 = uint8.empty; % flag for type of nonlinear formulation % Contact parameters stiff double = double.empty; % stiffness coefficient damp double = double.empty; % damping coefficient fric double = double.empty; % friction coefficient end
Constructor method
methods function this = ContactForceT_SDSNonlinear() this = this@ContactForceT(ContactForceT.SDS_NONLINEAR); this = this.setDefaultProps(); end end
Public methods: implementation of super-class declarations
methods %------------------------------------------------------------------ function this = setDefaultProps(this) end %------------------------------------------------------------------ function this = setCteParams(this,int) if (this.formula == this.TTI && isempty(this.damp)) if (~isempty(int.cforcen)) this.damp = int.cforcen.damp; else this.damp = 0; end end end %------------------------------------------------------------------ function this = evalForce(this,int) % Force modulus (friction contribution) if (~isempty(int.cforcen)) ff = this.fric * norm(int.cforcen.total_force); else ff = 0; end % Force modulus (viscoelastic contribution) switch this.formula case this.DD this.stiff = 16 * int.eff_shear * sqrt(int.eff_radius * int.kinemat.ovlp_n) / 3; f = this.stiff * int.kinemat.ovlp_t; case this.LTH max_ovlp = this.fric * int.kinemat.ovlp_n * (2 - int.avg_poisson) / (2 - 2 * int.avg_poisson); a = 1 - min(abs(int.kinemat.ovlp_t),max_ovlp) / max_ovlp; fe = ff * (1 - a^(3/2)); fv = this.damp * sqrt(6 * int.eff_mass * ff * sqrt(a) / max_ovlp) * int.kinemat.vel_t; f = fe + fv; case this.ZZY max_ovlp = this.fric * int.kinemat.ovlp_n * (2 - int.avg_poisson) / (2 - 2 * int.avg_poisson); a = 1 - min(abs(int.kinemat.ovlp_t),max_ovlp) / max_ovlp; fe = ff * (1 - a^(3/2)); fv = this.damp / (2 * int.eff_shear * max_ovlp) * (1 - 0.4 * this.damp * abs(int.kinemat.vel_t) / (2 * int.eff_shear * max_ovlp)) * (1.5 * ff * sqrt(a)) * int.kinemat.vel_t; f = fe + fv; case this.TTI this.stiff = sqrt(2 * int.eff_radius) * int.eff_young * sqrt(int.kinemat.ovlp_n) / ((2 - int.avg_poisson) * (1 + int.avg_poisson)); fe = this.stiff * int.kinemat.ovlp_t; fv = this.damp * int.kinemat.vel_t; f = fe + fv; end % Limit viscoelastic force by Coulomb law f = min(abs(f),abs(ff)); % Total tangential force vector (against deformation and motion) this.total_force = -f * int.kinemat.dir_t; end end
end