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Conditional estimands
In general, we can target causal estimands at different levels of aggregation:

Individual treatment effect (ITE)

Conditional average treatment effect (CATE)

Average treatment effect (ATE)

And other variants such as ATT, ATC, LATE, are also examples of conditional
effects (of a different type, for sure)

τi = Y1i − Y0i

τ(x) = E(Y1i − Y0i|X = x)

τ = E(Y1i − Y0i)
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What heterogeneity?
Two related, but different concepts, are those of causal interaction and
essential heterogeneity.

Causal interaction refers to the situation in which we have two
interventions, and their effect is not additive. For example, if we have

for some , we say that  and  causally interact.

Essential heterogeneity, usually appearing in econometrics, refers to the
situation in which subjects choose to participate on certain program based on
their (unobserved) expected returns. More on this at the end.

E(Y |do(x, z)) ≠ E(Y |do(x, z∗))

z∗ x z
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Graphical models for e�ect modi�cation
Recall DAGs are non-parametric, so by default they assume that every variable
can interact with each other.

Which variables can be sources of treatment effect heterogeneity in the
following DAG?
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Graphical models for e�ect modi�cation
Recall DAGs are non-parametric, so by default they assume that every variable
can interact with each other.

Which variables can be sources of treatment effect heterogeneity in the
following DAG?

Thinking in terms of the structural equations usually helps
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The "machine learning DAG" (?)
Sometimes, you would find oversimplifications of the data generating process
to explain or justify conditional ignorability.

But trying to think carefully about your data generating process cannot be
replaced by convenience-based assumptions!
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The "machine learning DAG" (?)
Sometimes, you would find oversimplifications of the data generating process
to explain or justify conditional ignorability.

But trying to think carefully about your data generating process cannot be
replaced by convenience-based assumptions!

Source: Imbens (2020)
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Four types of e�ect modi�cation
Using graphical models, VanderWeele and Robins proposed four types of
effect modification.

Direct effect modification

Indirect effect modification

Effect modification by proxy

Effect modification by common cause
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Old school
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Estimating heterogeneity
Traditionally, there have been many ways to estimate effect heterogeneity.

In regression models, including interaction terms.
Need to specify which variables one is interacting
Need to specify which the functional form of such interactions

Recent "best practice" proposals:

Hainmueller, Mummolo, and Xu (2018)

Mize (2019)

In stratification approaches, one can either use balanced propensity score
strata, or do subgroup analysis for a set of previously defined comparison
groups.
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Limitations of old school approaches
Stratification approach only feasible with low-dimensional and discrete X.

It won't produce very nuanced estimates in general
Good for testing, not necessarily for discovering

Regression with interaction approach too restrictive with respect to the
heterogeneity

Need to select variables to "interact"
Include or not main terms?
No attention to overlap/distributional issues
Usually presented as hypothesis-based, but mostly fishing

Two opposite risks: fishing and extreme rigidity.

A new wave of estimators has been developed trying to address those
issues.

The goal: flexibility without arbitrariness.
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New wave

Source: This section is based on Wager's
class notes

18 / 53

https://web.stanford.edu/~swager/stats361.pdf


Using ML to estimate CATE: two approaches
Transformed Outcome Regression

A transformation of the observed outcome whose expectation equals
to our quantity of interest (CATE)
Pros: valid of any off-the-shelf ML algorithm
Cons: high variance!

Response Surface Modeling

Using the observed outcomes conditional on the treatment status to
model  and 
Pros: more familiar (just a supervised problem?)
Cons: algorithms and CV need adaptation (cross-fitting, honesty)  

In both cases we need experimental data, or

E(Y |X,D = 1) E(Y |X,D = 0)

(Y1,Y0) ⊥⊥ D|X
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Transformed Outcome
Let's define the following transformation of the observed outcome

Where

 is the observed outcome

 is the treatment status (1 if treated, 0 if control)

 is the propensity score 

Z ≡ D −
Y

e(X)

(1 − D)Y

1 − e(X)

Y

D

e(X) P(D = 1|X)
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Transformed Outcome
It can be shown that

Where

 by potential outcome consistency, and

 by expectation of a binary variable.

Therefore

Why has this estimator a high variance?

E(Z|X) = P(D = 1|X) − P(D = 0|X)
E(Y1|X)

e(X)

E(Y0|X)

1 − e(X)

E(Y |X,D = 1) = E(Y1|X)

E(D|X) = P(D = 1|X)

E(Z|X) = E(Y1|X) − E(Y0|X) = τ(X)
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The two-regression approach
One immediately intuitive strategy to estimate effect heterogeneity is
apparent when rewriting the CATE as

where

We can see that  is simply a conditional expectation and we can just fit a
flexible model to each of them.

Our CATE estimator then becomes

τ(x) = μ1(x) − μ0(x),

μd(x) = E(Yi|Xi = x,Di = d)

μd(x)

τ̂ (x) = μ̂1(x) − μ̂0(x)
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Problems with the two-regression approach
Despite being intuitive and sometimes sufficient, modeling  and 
independently has some drawbacks:

Regularization bias: when the sample size of treated and control units is
too different, and we are flexibly modeling both response surfaces, 
and  would be subject to different regularizations

μ0 μ1

μ̂0

μ̂1

Künzel et al (2019)

23 / 53

https://www.pnas.org/content/116/10/4156


Problems with the two-regression approach
Despite being intuitive and sometimes sufficient, modeling  and 
independently has some drawbacks:

Regularization bias: when the sample size of treated and control units is
too different, and we are flexibly modeling both response surfaces, 
and  would be subject to different regularizations.

Covariate shift: when the propensity score  vary considerably across
the support of , then the fit of  and  would be influenced by
different regions of .

¿Are these cases likely to happen in practice?

μ0 μ1

μ̂0

μ̂1

e(x)
X μ̂0 μ̂1

X
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Semi-parametric approaches
One possible solution to the previous problems is to estimate the CATE under
a semi-parametric framework. Consider the following model:

where  for some basis functions .

Under unconfoundedness, it can be shown that we can rewrite this model

where 

Here we would model the  and  relationships using flexible
approaches (like ML).

Then we fit a regression for the residualized  on the residualized treatment 
 (aka, residuals-on-residuals regression), using cross-fitting.

Ydi = f(Xi) + dτ(Xi) + ϵi(d)

τ(x) = ψ(x)β ψ

Robinson
(1988)

Yi − m(Xi) = (Di − e(Xi))ψ(Xi)β + ϵi

m(x) = E(Yi|Xi = x) = f(Xi) + e(Xi)τ(Xi)

X → Y X → D

Y
D
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https://www.jstor.org/stable/1912705?seq=1#metadata_info_tab_contents


Loss function for the CATE
What about cases in which limiting ourselves to the semi-parametric
regression model is still too restrictive?

For example, with complex and high-dimension , we might not want to stick
to functions , and instead try to "discover" a good approximation to the
CATE.

X
ψ(x)β
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Loss function for the CATE
Recall that .

It is easy to see that, under unconfoundedness, 

where .

We can further rewrite the residualized outcome model as

where 

This is equivalent to

μd(x) = E(Ydi|X = x)

E(ϵi(Di)|Xi,Di) = 0

ϵi(d) = Ydi − (μ0(Xi) + dτ(Xi))

Yi − m(Xi) = (Di − e(Xi))τ(Xi) + ϵi

m(x) = E(Yi|Xi = x) = μ0(Xi) + e(Xi)τ(Xi)

τ(⋅) = argminτ ′{E([(Yi − m(Xi)) − (Di − e(Xi))τ ′(Xi)]
2
)}
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Loss function for the CATE
This is equivalent to

But recall that we don't have  nor , both need to be estimated.

So one would implement this approach:

Replacing the loss function with the plug-in version;

Potentially adding a regularizing term;

Estimation using cross-fitting.

τ(⋅) = argminτ ′{E([(Yi − m(Xi)) − (Di − e(Xi))τ ′(Xi)]
2

)}

μd e(Xi)
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Example: Causal Trees

Source: Brand et al. (2021)
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Validating treatment heterogeneity
Finally, we have the problem of how to validate treatment heterogeneity
found in these flexible ways just described.

Recall that, most of the times, the aim of such analysis is targeting policies or
designing tailored treatment regimes, so we need estimates that are precise
enough but not all over the place.

Some suggestions:

Use cross-validation to select the best performing model

Use ensemble methods when competitors show similar performance

Use these methods as an honest group finding strategy, and then do
subgroup analysis.

Go back to the semi-parametric strategy, using the more flexible
approaches as a benchmark for the  functions.ψ
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Extensions and limitations
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HTE under unconfoundedness
So far we have assumed either randomization or conditional ignorability in
order to identify HTE. Under this assumption, we will see that ML methods
could help estimation by restricting our search for HTE.

An intuitive way of limiting the search for heterogeneity is to use an uni-
dimensional index that summarizes all covariate's information: the
Propensity Score (PS).

This is a natural extension in the use of Propensity Scores: if we can identify
conditional effects in each strata defined by , then we can do the same
using  instead.

X = x
P(D = 1|X = x)
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HTE and selection bias
Recall that we can decompose the difference-in-means estimator as the true
ATE plus two bias terms:

Under conditional ignorability, both baseline and response to the treatment
biases are ruled out.

E(Y1 − Y0)− True ATE

π[E(Y0|D = 0,X) − E(Y0|D = 1,X)]+ baseline bias

(1 − π)[E(Y1|D = 1,X) − E(Y1|D = 0,X)] response bias
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HTE and propensity scores
If we are able to assume selection on observables, then all the bias-removing
information in the covariates can be summarized by 

This means that including a  terms (however flexible) is
sufficient to capture treatment heterogeneity based on observables.

Xie, Brand, and Jann(2012) proposed three methods for estimating treatment
effect heterogeneity using propensity scores:

Stratification-Multilevel method

Matching-smoothing method

Smoothing-differencing method

e(Xi)

Treatment × PS
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HTE and propensity scores
Xie, Brand, and Jann(2012) proposed three methods for estimating treatment
effect heterogeneity using propensity scores:

Stratification-Multilevel method

Construct balanced strata
Estimate strata-specific effects
Multilevel model of the second-level trend

Matching-smoothing method

Smoothing-differencing method
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HTE and propensity scores
Xie, Brand, and Jann(2012) proposed three methods for estimating treatment
effect heterogeneity using propensity scores:

Stratification-Multilevel method

Matching-smoothing method

Construct a balanced matched sample
Estimate pair (or block) specific effects
Non-parametric modeling of the trend

Smoothing-differencing method
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HTE and propensity scores
Xie, Brand, and Jann(2012) proposed three methods for estimating treatment
effect heterogeneity using propensity scores:

Stratification-Multilevel method

Matching-smoothing method

Smoothing-differencing method

Construct a balanced matched sample
Fit non-parametric models for control and treatment groups
Take the difference between the regressions
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Example: Negative selection into College
Using this method, Brand and Xie (2010) find that those with lower propensity
to attend College are the ones that benefit the most from going to College.

Data: Wisconsin Longitudinal Study (1957 cohort), women sample.
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HTE under SOO violations
However, what happen when there is unobserved selection into the
treatment?

Breen, Choi and Holm (2015) shows that, under small departures from the
conditional ignorability assumption, it is possible to:

Find heterogeneous effects where the true effect is homogeneous.

Commit errors of magnitude, direction, or both, when the true effect is
heterogeneous.

They particularly criticized the PS-based approach because baseline bias can
easily be mistaken for HTE.
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HTE and selection bias
For simplicity, let's assume the potential outcomes are generated by a linear
function (with constant ):

and the selection into the treatment (  ) is defined by a latent switching
function :

β, δ, ϵ

Y1 = βXi + δ + ϵi
Y0 = βXi + ϵi

Di

D∗
i

D∗
i = γZi + ui, such that {

Di = 1 if D∗
i

> 0

Di = 0 if D∗
i

≤ 0
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HTE and selection bias
We are assuming a constant effect  with no influence on . It can be shown
that under unobservable selection (when ), the amount of bias
is heterogeneous on the propensity score:

By assuming the errors are bivariate normal, We can came up with an
analytical formula for this bias term:

δ ϵ
corr(ϵ,u) ≠ 0

Complete derivation on Breen, Choi and
Holm (2012)

E(Y |D = 1, e(X)) − E(Y |D = 0, e(X))

=δ + [E(ϵ|D = 1, e(X)) − E(ϵ|D = 0, e(X))]

ρϵ,uσϵ
ϕ(Φ−1p(Z))

p(Z)(1 − p(Z))
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Bias as function of propensity score
The intuition behind Breen, Choi, and Holm (2015) is that both baseline bias
and the hypothesized heterogeneous effect are functions of the propensity
score.

Therefore, we cannot disentable between them when conditional ignorability
does not hold (or without further parametric assumptions)
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Bias as function of propensity score
Constructing strata of varying width (as in the original paper), the authors are
able to reproduce the negative selection pattern shown in Brand and Xie
(2010)
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HTE under unobserved selection
At this point, we can't make any progress unless we are willing to add some
assumptions.

One approach, with a long tradition in Economics, is to directly model the
selection process, allowing the agents to anticipate their potential outcomes
under different treatment conditions. This is known as the Roy model.

A lot of this work has been done by James Heckman (1974, 2005; Heckman,
Urzua and Vytlacil, 2006), with recent extensions by Zhou and Xie (2016, 2018)

A good general introduction to this framework can be found in Heckman
(2005) The scientific model of causality
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Generalized Roy model
To proceed, we have to define the potential outcomes and the selection
process as follows:

Where Z and V represent observed and unobserved variables respectively, X is
a subset of Z, and  are instruments. Finally, U corresponds to quantiles
of V given X.

Y0 = μ0(X) + ϵ

Y1 = μ1(X) + ϵ + η

D∗ = μD(Z) − V

D∗ = (P(Z) − U > 0)

D = I(D∗ > 0)

Z ∖ X
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Generalized Roy model
We are assuming  are independent of Z given X, but  could be
arbitrarily correlated with .

Along with monotonicity, these are the same conditions to identify the LATE
we have already discussed.

In short, this means that subjects can sort themselves into the treatment based
on expected gains (their anticipated ).

In the classic Roy model,  (so perfect knowledge about the
effect of the treatment for oneself).

In the generalized Roy model, the selection function could discount for the
cost of changing the treatment status , or be conditional on
the information that the subjects have ex ante , among other
scenarios.

(ϵ, η,V ) V
(η, ϵ)

Y1i − Y0i

D∗ = Y1 − Y0

(Y1 − Y0 − C)
(Y1 − Y0|I)
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Marginal Treatment E�ect (MTE)
We can then define the Marginal Treatment Effect (MTE) as the fundamental
quantity in this framework:

Interpretation of the MTE as the effect for those indifferent between
participating on not, if the instrument is set to 

Integrating over the distribution of  and , we can construct other known
causal quantities: ATE, ATT, ATC, and new quantities as the PRTE (Policy
Relevant Treatment Effect).

MTE(x,u) = E[Y1 − Y0|X = x,U = u]

= E[μ1(X) − μ0(X) + η|X = x,U = u]

= μ1(X) − μ0(X) + E[η|X = x,U = u]

P(Z) = uD

X U
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Estimation of MTE
Estimation could be parametric or semi-parametric, and usually involves
more stringent assumptions about the error terms (such as being additively
separable).

The traditional sample selection of Heckman (1978), aka the "normal
switching regression model", is a special case of the MTE under 
assumed to be jointly normal with zero means.

Critical conditions for estimating the MTE are continuous instruments and
common support between  and the IV.

Formal identification results in the control function and LIV setting given in
Heckman-Vytlacil (1999, 2001, 2005) and Heckman, Urzua and Vytlacil (2006).

(ϵ, η,V )

P(Z)
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HTE as a function of MTE
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Negative selection re-visited
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HTE under unobserved selection
Conceptually, what we were trying to achieve is to adjust for both observed
and unobserved selection when  doesn't hold, so we would
have 

However, nothing is free in causal inference! So we have to make further
(untestable) assumptions and embrace some parametrization in order to
identify such models.

We can still have good reasons to do so, particularly in settings in which
sorting into the treatment is plausible. Then, modeling  would likely be a
better approximation than assuming conditional ignorability.

(Y1,Y0) ⊥⊥ D|X
(Y1,Y0) ⊥⊥ D|X,U

U
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