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B.1 Formal Result for Disjoint Indicator Functions

First, for clarity the main environment will be restated.

Consider an arbitrary data generating process (DGP) ψh : R×RL → R for an outcome variable Y at time t + h

Yt+h =ψh(ϵt ,St+h) (1)

Here, ϵt is the structural shock of interest at time t and St+h is "everything else" in the system, which could

for instance include the information set at time t as well as leads and lags of ϵt (and other shocks). Following

Rambachan and Shephard (2025) and Kolesár and Plagborg-Møller (2025), the working definition of a shock,
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with respect to a DGP of the form in (1), is that it satisfies ϵt ⊥ St+h ∀h≥ 0. In that case, note that the conditional

mean mh(a)≡ E[ψh(a,St+h)|ϵt = a] is equal to the average structural function Ψh(a)≡ E[ψh(a,St+h)].

Now we turn to the estimands of interest. For a group of N functions
�

fi(·)
	N

i=1 and control set Wt , suppose

we regress Yt+h on
n

1,
�

fi(ϵt)
	N

i=1 , Wt

o

. The specification is

Yt+h = α+ β1 f1(ϵt) + · · ·+ βN fN (ϵt) + γ
′Wt + ut+h (2)

= α+β ′Xt + γ
′Wt + ut+h

where Xt is a concatenation of
�

fi(ϵt)
	N

i=1. If ϵt is a shock and continuously distributed on an interval I ⊂ R,

Kolesár and Plagborg-Møller (2025)’s Proposition 1 can be extended to show that

βi =

∫

I

ωi(a) ·m′h(a)da (3)

with ωi(a) =
Cov(1{a≤ϵt}, X⊥i )

Var(X⊥i )
(4)

where X⊥i is the residual from projecting the ith element of Xt on the remaining N −1 elements.1. Definition. Call

a collection of disjoint intervals
�

Ii

	N

i=1 a sign partition (of R) if there exists O0 (which we can call the center set)

such that 0 ∈ O0, O0 ∪
�

∪N
i=1 Ii

�

= R, and O0 ∩
�

∪N
i=1 Ii

�

is measure zero.

Definition. Call a collection of indicator functions
�

fi(x t)
	N

i=1 a normalized collection on a sign partition
�

Ii

	N

i=1

if their concatenation X f
t has full rank, x ∈ Ii⇐⇒ fi(x) ̸= 0, and a normalization:

• x < 0 and fi(x) ̸= 0 =⇒ fi(x) = −1

• x > 0 and fi(x) ̸= 0 =⇒ fi(x) = 1.

Also recall the earlier notation: f ⊥i (ϵt) are the residuals in a projection of fi(ϵt) on { fk(ϵt)}Nk ̸=i and a constant.

Proposition 1. Suppose ϵt is a continuously distributed shock on I ⊂ R and Yt+h follows a data generating process of

the form (1) satisfying the conditions of Kolesár and Plagborg-Møller (2025) Proposition 1. Let mh(a) be the mean of

Yt+h conditional on ϵt = a. For a normalized collection of indicator functions
�

fi(ϵt)
	N

i=1 on sign partition
�

Ii

	N

i=1

with center set O0, define
�

gi(ϵt)
	N

i=1 by gi(x) = αi fi(x), where αi =
Cov(ϵt , f

⊥
i (ϵt ))

Var( f ⊥i (ϵt ))
, and let Xt be their concatenation.

If we project Yt+h on Xt (and a constant and control set as in (2)), then βi = β j ∀i, j if mh(·) is linear in ϵt .

Let Si j = O0 ∪ Ii ∪ I j . βi = β j for i ̸= j if mh(·) is linear in ϵt on
�

inf{Si j}, sup{Si j}
�

∩ I .

In plain terms: if the DGP is linear on the space where the weights on βi and β j are non-zero, then βi = β j . The

statement of the result is a bit technical because of a couple subtle points. Notice that the total weight for big

and small shocks of the same sign in Figure 15 is not comparable. So we might be concerned the results are

1And a constant. Also need
�

fi(ϵt )
	N

i=1 s.t rank condition holds
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distorted by a scaling issue. Of course, the functions can easily be rescaled, but this scaling is sample-dependent so

in principle a more direct correction is needed. Indicator functions turn out to have a very easy correction that

boils down to a two-stage estimator. The other piece is what regions the indicator functions can be active. Disjoint

intervals are not necessary but it makes stating the result easier. Ironically, letting intervals overlap in general

allows for a more targeted statement of where nonlinearities exist because the region where weight is placed

actually shrinks. More discussion is in the rest of the paper and Appendix B.2, as well as a fuller proof.

To sketch out the rest of the result, it’s perhaps most instructive to show why Example 1 didn’t work, which has

similar structure but two functions: f1(y) = y · 1y<0 and f2(y) = y · 1y>0. For the estimand on f1, the weights

follow

ω1(a)∝ Cov(1a≤yt
, X⊥i ), with X⊥1 = f1(y)−E[ f1]−

Cov( f1, f2)
Var( f2)

( f2(y)−E[ f2]).

Even when a > 0, and the indicator is not active, these weights will vary significantly (and eventually turn negative)

because they have a term −Cov(1a≤yt
, yt ·1yt>0). But the solution is not as simple as dropping the interaction;

notice in Example 6, the indicator functions used a lower bound of .01 because a collinearity problem emerges as

the floor approaches 0. So if Example 1 had instead used f1(y) = −1y<−b and f2(y) = y ·1y>b, for some small b

bounded away from 0, the weights (and X⊥1 ) would not have the same problematic term because if we project f1

on {1, f2}, the projection constant and coefficient have the same magnitude (i.e., X⊥1 = −1yt<−b − β(11yt>b
− 1)).

This is mechanical and occurs even in finite sample estimation. So the sample analog of Cov(1a≤yt
, X⊥1 ) will be a

sum of terms that are non-zero only if the "irrelevant" indicator 1y>b is inactive. Even on the interval [−b, b], we

have a guarantee of non-negative weights because Cov( f1, f2) = −E[ f1]E[ f2] > 0. So incredibly, these disjoint

indicator functions guarantee non-negativity and relevance and the seemingly innocuous choice to interact them

with the shock makes these nice properties go away. The tacit importance of the center set O0 should also not

be overlooked. This was discussed in Example 5, where the center set is essentially (1,∞), and as a result each

estimand placed weight in that region. Relegating inconvenient weight to a slice around the origin allows for more

targeted hypothesis testing and general interpretation.

B.2 Proof of Result

First, restating some of the key definitions.

Definition. Call a collection of disjoint intervals
�

Ii

	N

i=1 a sign partition (of R) if there exists O0 (which we can

call the center set) such that 0 ∈ O0, O0 ∪
�

∪N
i=1 Ii

�

= R, and O0 ∩
�

∪N
i=1 Ii

�

is measure-0.

Definition. Call a collection of indicator functions
�

fi(x t)
	N

i=1 a normalized collection on a sign partition
�

Ii

	N

i=1

if their concatenation X f
t has full rank, x ∈ Ii⇐⇒ fi(x) ̸= 0, and a normalization:
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• x < 0 and fi(x) ̸= 0 =⇒ fi(x) = −1

• x > 0 and fi(x) ̸= 0 =⇒ fi(x) = 1.

Also recall the earlier notation: f ⊥i (x t) is the residuals in a projection of fi(x t) on { fk(x t)}Nk ̸=i and a constant.

The strategy of the proof will be to first show that for a normalized collection of indicator functions
�

fi(x t)
	N

i=1

on a sign partition
�

Ii

	N

i=1, if we project fi on the rest of the functions (and a constant), all the projection estimands

will have the same magnitude. This will allow us to show a piecewise form for f ⊥i (x t) that proves the weights in

the estimands on the functional regressors in a projection of Yt+h on
�

fi(x t)
	N

i=1 (and a control set and a constant)

will be non-negative. This warrants the interpretation of each as representing a positively weighted average of

marginal effects. To actually compare coefficients, we need to normalize them so that the integrated weight is

the same across coefficients, which thankfully is very simple. One thing important to highlight before proceeding

is the "normalization" aspect of the indicator functions. If we did not have this, the correlation with x t would

naturally be negative for the indicator functions active on the negative real line.

Step 1: Uniform Magnitude in Residualization Projections

Consider a normalized collection of indicator functions
�

fi(x t)
	N

i=1 on a sign partition
�

Ii

	N

i=1. For a projection of

f1 (i = 1 WLOG) on the rest of the functions (and a constant) we consider

f1 = b0 +
N
∑

k=2

bk−1 fk + f ⊥1

The constant solves b0 = E[ f1]−
∑N

k=2 bk−1E[ fk]. The other estimands solve b0E[ fk] = −bkE[ f 2
k ]. Using the

definition of fk (normalized indicator function), bk−1 = −b0sign(Ik) for k ≥ 2.2 Substituting into the equation for

the constant and defining µi = P(x ∈ Ii) and µ0 = P(x ∈ O0), we get sign(I1)µ1 = b0(µ1 +µ0). Therefore

|b j |=
µ1

µ1 +µ0
( j ≥ 0)

Note that (i) sample analogs will have this same property and (ii) center set O0 must have positive measure in

order for these projections not to be perfectly collinear (hence the full rank condition is critical).

Step 2: Form of Projection Residuals and Implications

Now switching to the general case, define b⊥i =
µi

µi+µ0
. We have shown that f ⊥i (x) is equal to sign(Ii)(1− b⊥i ) when

x ∈ Ii , −sign(Ii)b⊥i when x ∈ O0, and 0 otherwise. So now we return to the form of the weights in (3). Again, we

assume ϵt is a continuously distributed shock on I ⊂ R. The weights will be non-negative if Cov(1ϵt≥a, f ⊥i (ϵt))≥ 0.

Because f ⊥i (ϵt) is a mean-0 function

Cov(1ϵt≥a, f ⊥i (ϵt)) =

∫ ∞

a

f ⊥i (x)dF(x)

2sign(Ik)≡ sign(ik) for any ik ∈ Ik (given our definition of normalized collection and sign partition).
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where F(·) is the distribution function of ϵt . This now illuminates the necessity of normalizing the indicator

functions to not simply be binary but instead to be −1 if they are active on negative regions. The formula above

shows that the weights represent the remaining mass ϵt has left on the real line (from a onward) weighted by the

function’s values. Because the function is mean-0, from −∞ to the left endpoint of Ii , the weights are 0.

• For the case of the indicator functions relating to an interval where sign(Ii) = −1, as a increases from its

left endpoint, the weights increase as the function has less mass remaining with negative values. Therefore

the weights peak at the right endpoint, where all of the negatively-weighted mass has been shed. If this

endpoint is not at the border of O0, they will remain at this peak until a hits the left border of O0, then they

will decrease until they hit 0 at the right endpoint of O0.

• For the other case (sign(Ii) = 1), the weights follow the opposite pattern. The negatively-valued parts are on

O0, so moving along the real line towards∞ increases Cov(1ϵt≥a, f ⊥i (ϵt)) until it hits its peak at the right

endpoint of O0, and remains there until the beginning of Ii

So not only have we shown that the weights will be non-negative, we’ve also traversed out the values they will

take along the entire support.3 Combined with the extensions of Kolesár and Plagborg-Møller (2025) shown in

Section 2, we have shown these coefficients represent positively weighted sums of average marginal effects.

Some discussion on the mechanics demonstrated above before proceeding with the proof. This underscores

both the importance and the tension of the O0 region: if we make O0 singleton (simply 0), the function collection

will not have full rank because the functions will be perfectly collinear (plug in µ0 = 0 to the earlier expressions).

At the same time, the larger the O0 region, we are increasing the areas where the estimand on fi is putting positive

weight on areas not in Ii . This motivates the generated regressors approach. As will be discussed later in this

Appendix, another fix is to allow for the indicators to overlap, but this of course introduces a different kind of

collinearity problem. One nice thing about the O0 region in practice is many of these shock series have lots of

zeros, which may introduce separate problems (Barnichon and Mesters, 2025) but as far as this application is

concerned it’s helpful because we can make O0 small without having µ0 ≈ 0.

Step 3: Re-Scaling the Functions We have shown that each βi in a projection of Yt+h on a relatively generic set

of indicator function
�

fi(x t)
	N

i=1 will be be weighted sum of average marginal effects. However, we still have to

confront a scaling problem to make comparisons between coefficients. Namely, recall from Proposition 1 that mh(a)

is the expectation of Yt+h conditional on ϵt = a. Suppose we run the aforementioned projection and compare β1

and β2. If
∫

I ω1(a)da < 1 and
∫

I ω2(a)da = 1, then even if mh(·) is linear in ϵt , β1 ̸= β2. Rather than trying to

define indicator functions along equal regions of probability mass, we can instead just scale the estimands so that

their integrated area is the same. It makes sense to normalize the weights so that they all integrate to 1 so we can

3Note if there are gaps in the support I ⊂ R, the behavior is the same just in a discontinuous fashion.
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interpret them as proper weighted averages (of marginal effects). This normalization is simple, and while it makes

these new functions generated regressors, the requisite delta method correction will be negligible in practice.

To be explicit: given the same
�

fi(x t)
	N

i=1, our goal is to create a new collection
�

gi(x t)
	N

i=1. For each gi , we

are looking for αi such that in a projection of Yt+h on
�

gi(x t)
	N

i=1 (and a constant and control set), the resulting

estimand weights (given by (4)) on the new set of functional regressors will have the property
∫

I ω
g
i (a)da = 1.

First, note that we are effectively creating indicator functions out of indicator functions, though in a broad sense

where the outputs are a binary other than 0 and 1. So the resulting weights in these new functions will have

the property αiω
g
i (a) = ωi(a), where ωi(a) are the weights in the projection using the collection

�

fi(x t)
	N

i=1.

Integrating over both sides, the correction is simply to divide by the total weighted area from the original projection,

which is given by
Cov(ϵt , f

⊥
i (ϵt ))

Var( f ⊥i (ϵt )
(proof in next Appendix section), i.e., αi are the projections coefficients from x t on

�

fi(x t)
	N

i=1 and a constant. For the standard error correction, the projection estimands for gi defined implicitly in

terms of all the αi . Because the corrections are essentially just scaling 1 estimand that is orthogonal to the others,

differentiating the usual OLS form of (X ′X )−1X ′Y yields a variance correction of
�

∂ β̃i
∂ αi

�2
Var(αi) =

β̃2
i Var(αi)
α2

i
, where

β̃i is the new projection estimand for gi , meaning for the sample analog, we simply divide the estimate for β̃ by

corresponding first stage t-statistic. So another reason to not increase the number of functions from the baseline

of N = 4 is because these corrections will become less negligible. The covariance correction is
β̃i β̃ j

αiα j
Cov(αi ,α j),

where |Cov(αi ,α j)| is actually just Var(α0).

Now we are done: the estimands represent weighted averages of marginal effects. Recall the discussion from

Step 2 on the areas at which functions will have weight. For functional regressor fi , weight will be placed on

[min
�

Ii , O0

	

,max{Ii , O0}]∩ I . So comparing two estimands for fi , f j mean the total area of weight covered is the

same Si j given in the proposition. Therefore, if mh(·) is linear in ϵt on Si j , then βi = β j . Next, we will discuss

trying to get a "better" result because Si j may be large, especially when the number of functions grows.

The Practical Drawbacks of a Stronger Result

Using the same steps, we can prove a stronger result. Suppose we drop the requirement of the sign partition that

the intervals be disjoint and instead define several overlapping intervals. Since O0 cannot be measure 0 to satisfy

the definition of a normalized collection, define o−, o+ such that O0 = [o−, o+]. So instead of a sign partition, we

can call an overlap sign partition a collection of intervals such that each Ii satisfies [Li , o−) for some Li or [o+, Ri)

for some Ri (in slight abuse of notation, Li may be −∞). This just creates two groups: negative and positive

shock intervals. In the body of the paper, we define the indexing of the intervals so that the first member of each

group corresponds to the smallest shock magnitudes and order the negative group first. Continue to assume that is

the case, so that I1, . . . , In− are the group of negative intervals and In−+1, . . . , IN are the group of positive intervals.

Then we for an overlapping sign partition, we have the same results in Proposition 1 but a different Si j region.

Other for i that relates to a beginning of a group (i.e., for i ̸= 1, n− + 1), the weights ωi(a) for the βi will non-zero
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for a ∈
�

Ii−1 ∪ Ii

�

. For if i = 1, n− + 1, there is non-zero weight for a ∈
�

O0 ∪ Ii

�

. Two immediate takeaways.

First, this is incredibly ironic. The regions of overlap across functions are considerably tighter if we allow for the

intervals themselves to overlap. For N = 4, the regions are essentially the same, but you can also show that the

weights placed in the estimand for βi are comparatively much smaller outside of Ii . Second, this seems to be a

much better approach, taken at face value, especially for N > 4. Our goal would be to interpret each βi as an

estimate of average marginal effects on Ii . Because of the considerable weight placed outside of Ii in the default

Proposition 1 case, this really isn’t possible. If we allow for overlap, the interpretation is much more reasonable.

There is however no free lunch to this result in practice, even if the identification result is strictly more desirable.

Allowing the intervals to overlap means the regressors have much more correlation between them. This will of

course show up in standard errors. Further, the expansive Si j may actually be a benefit once we are in realm of

having a proxy for the structural shock, rather than the structural shock itself. With a proxy, we have no way to

know exactly where weight is being placed. Proposition 1 shows that even in a proxy world, the region where

weight is being placed will be anchored by O0 across estimands. So in practice, we will define an O0 in terms of

functions of the shock, but the center set we are actually using with respect to the proxy is unknown. In the case

of using disjoint intervals, we at least know that however the center set shifts, the weights will all shift together,

which gives some regularity. These two drawbacks ultimately mean the best path forward is simply to use disjoint

intervals. But if the primary intent is to get point estimates of average marginal effects on specific regions of the

shocks support, it may be worth the inefficiency to use overlapping intervals.

B.3 Orthogonal Generated Regressors

Again consider the premise of a shock ϵt with functions of the shock { fi(ϵt)}Ni=1 included in a regression on Yt .

If the functions are uncorrelated and mean 0, the weight form (4) simplifies to

ωi(a) =
Cov(1{a≤ϵt}, fi(ϵt))

Var( fi(ϵt))

Suppose ϵt follows distribution F with support I and the collection { fi}Ni=1 corresponds to a partition {Ii}Ni=1 of I .

If fi ̸= 0 only on Ii , the weights will have no overlap – ω j(a)> 0 for only one j. A strict no overlap requirement is

not one of the weight targets, but if we restrict ourselves to collections of uncorrelated mean 0 functions, it’s easy

to construct a collection satisfying our objectives from the ground up. First, note that for any mean 0 function

Cov(1{a≤ϵt}, fi(ϵt)) =

∫ ∞

a

fi(x)dF(x).

The next step is to find N functions, staying within this class, producing weights that are non-negative, relevant, and

hump-shaped. The expression above shows a clear route to satisfaction. WLOG, consider the interval Ii = [0, 1].
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For a fixed c ∈ (0, 1), ϵt has probability mass F(c)− F(0) on [0, c] and mass F(1)− F(c) on [c, 1]. Consider4

fi(a) =











0 a /∈ [0, 1]
−[F(c)− F(0)]−1 a ∈ [0, c)
[F(1)− F(c)]−1 a ∈ (c, 1]

This function abides by our constraint and targets:

• It’s mean 0 (expected value of 0 on [0, 1] and it’s exactly 0 everywhere else) and will inherently be uncorrelated

with other functions defined the same way for all of {Ii}Ni=1.

• The weights are non-negative, relevant, and hump-shaped.
∫∞

a fi(x)dF(x) is increasing initially at a = 0 as

the area with only negative values shrinks, then begins to decrease once the area with only positive values

shrinks. Eventually, it hits the boundary and becomes 0.

• It can also easily be modified to be smooth or scaled so that
∫

I ωi(a)da = 1.

We can also directly interpret the estimands as positively-weighted averages of marginal effects on Ii . There

are some clear downsides, however. Recall that Ri denotes the region where it’s permissible for weight to be

placed. The weight targets in general allow for some weight overlap because we don’t want to marry qualitative

descriptions for the partitioning of a shock’s support (e.g., "a = .99 is small, a = 1.01 is big"). In this case, Ri = Ii ,

so such paradoxes are unavoidable. The point at which weights peak must also be set explicitly. In practice, the

solution is to see how sensitive results are to changes in the partitioning and peaks. A deeper problem is the

distribution function is unknown. The procedure still works with the empirical CDF, but we would much rather the

functions not vary with repeated sampling. With these generated regressors, there would need to be a standard

error correction, outlined later in this section and in Appendix A.3, on top of the generated regressor implied by

Proposition 1. The direct correction is actually marginal but the standard errors themselves are intrinsically large.

B.4 Deep Learning

To motivate the use of deep learning, we will briefly get a sense of the can of worms we are opening if we allow

there to be correlation between the functions used in the regression. The N = 2 specification is

Yt+h = α+ β1 f (ϵt) + β2 g(ϵt) + ut

Appendix A.2 shows the integral of the weights in β1 is proportional to

Cov( f (ϵt),ϵt)−
Cov( f (ϵ), g(ϵ))

Var(g(ϵ))
Cov(g(ϵt),ϵt)

The first two goals to hit target weighting are non-negative and relevant weights. Since the quantity above

represents the "total weight", it’s important this quantity be positive to help ensure β1 represents a positively

4This has some precedent in applications of the Haar wavelet (Mallat, 1999).
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weighted average of marginal effects.5 Equally, we need the analogous expression for β2 to be positive. The

simplest path to joint satisfaction is the functions are correlated with ϵ yet uncorrelated with each other. As the

number of functions grows, the potentially paradoxical paths become more unwieldy. For the second goal, we

know from Section 2 the weights in β1 will be large where ϵt has more density and f1(ϵt) is large (provided

1a≤ϵt
= 1).

All these "steps to success" contextualize the moderate success of disjoint indicator functions for the N = 4 case

seen in the baseline specification. The focus of this paper will be on the targeting the same 4 combinations of {big,

small} and {positive, negative} along the dimensions of a shock’s size and sign. Like the orthogonal regressor

approach, the deep learning procedure can naturally be extended to larger collections, but the constraint sets are

already difficult to manage and increasing N will become impractical much sooner. Some anecdotal evidence to

this effect – in the N = 4 case with slight abuse of notation we have

Yt+h = α+ β1 fsmall, neg + β2 fbig, neg + β3 fsmall, pos + β4 fbig, pos + ut

For this case, one instance of training with standard normal shocks produces "small" functions resembling indicators

and "big" functions that look like a ReLu. Their plots (Figure 1) roughly look like (chronologically)

f1(x) = 1x>−0.5 − 1 and f2(x) = min{−.8x + 2, 0}

f3(x) = 1x>−0.1 − .1 and f4(x) = max{0, .8x − 2}

However, actually using these functions fails spectacularly; notice the approximations for f1 and f3 are highly

collinear. It turns out the neural network introduces lots of slight idiosyncrasies to slither through the monstrous

constraint set. So the complexity cost for expanding beyond N = 4 may not be worth the added specificity.

Deep learning carries a stigma of being opaque, but in this case neural network training is perfectly analogous

to generic minimization routines in your programming language of choice. The modal minimization application is

to find a vector x ∈ Rk that minimizes F(x ). The only difference here is the search is over a space of functions,

rather than a subset of the real numbers, and the space of functions that can be approximated by neural networks is

vast. Again, turning to deep learning is even more natural because we are more precisely looking for a collection of

functions with complicated dependencies. To search effectively in such a setting, a minimizer must jump through

lots of "hoops" in order to even take a step, meaning the extensive parameterization endemic to deep learning is

likely a necessary condition for this to even be a feasible venture.

In principle, a deep learning algorithm for the objectives (weighting targets) described at the beginning of this

section is simple. Each iteration of training (epoch) will generate a candidate collection of functions
�

fi(·)
	4

i=1.

5Though recall this is not a sufficient condition on its own, as many of the examples in Section 2 show.
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Given a sample for a shock {ϵt}Tt=0, this yields a set of weights defined by sample analogs of (4). The candidate

collection will be evaluated by a loss function which penalizes instances where weighting targets are not being

hit. For example, a penalty will be incurred if there is negative weight, if there is weight where there definitively

shouldn’t be, and if the weight functions are not initially increasing. There are a myriad of implementation flavors

for actually encoding this algorithm, which are discussed in more detail in Online Appendix C.2. One stumbling

block arising from the complicated nature of the problem is approaches that are functionally equivalent (e.g.,

different ways of estimating LP) can have very different complexity and convergence properties. The basic strategy

I’ve found most effective is to train with relatively few epochs, see what aspects of target weighting are being

violated most intensely, adjust the penalty weights for those components, and start again. The goal here is not

really about getting the loss value within a tolerance threshold, but rather to plot the weights after training and be

happy with the allocations (Kolesár and Plagborg-Møller, 2025).

B.5 Standard Errors for Generated Orthogonal Regressors

When using the generated orthogonal regressor approach, one must specify intervals {Ii}Ni=1 and a collection of

points {ci}Ni=1 within each interval where the weights will peak. Here, I only focus on the case where we set ci equal

to the median of the interval Ii (this is what was used for the applications in the paper). The full derivations can

be found in Online Appendix C.3, as well as derivations for the case that was initially presented in Appendix B.3

that defined the function in terms of the Empirical CDF.

To be explicit, define Ii = [Li , Ri), where Li may be −∞ in slight abuse of notation. Here, we are thinking

about a case where we have a time series for a shock (or a proxy)
�

ϵt

	T

t=0. When we set ci equal to the median,

our functions in the basic case where they are piecewise-linear are

fi(x) =











0 if x /∈ Ii
−ki

ni−ki
if x ∈ [Li , ci)

1 if x ∈ [ci , Ri)

where ni , ki are the number of observations where ϵt ∈ Ii and ϵt ∈ [Li , ci), respectively. This definition ensures

that the function will be hump shaped and place weight only within Ii .
6 The necessary delta error adjustment

turns out to be simple. The potential complications relating to the probability density at ci are neutralized the term

appears in both the variance of ci as well as ∂ βi
∂ ci

. The cancellation allows the correction term to simplify to bβ2
i /ni .

6The same adjustment described in Online Appendix B.1 can be performed to let the weights integrate to 1
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B.6 Illustrations of Functions and Their Weights

Figure 1: Neural Network Output with Standard Normal Shocks

Figure 2: Generated Regressor Weights, Standard Normal Shocks
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B.7 Generalization of Indicator Function Approach

As described in Section 3, the center set (which in a broader sense is the "reference set") need not be an interval

that includes 0. It’s common in microeconometrics to create several dummies and exclude one of them, rather

than leverage a continuous time series with lots of 0 values. So instead, we can think of targeting a "plateau set"

where we seek to create a function such that the regression weights will be 1 on an arbitrary interval [l, u] with

0 ∈ (l, u). For this, we include 3 indicator functions in a regression: −1x<l ,−1x∈[l,0],−1(0,u]. If we project the first

indicator function on the other two, we arrive at a similar result as Proposition 1: the residuals satisfy f ⊥1 = −b⊥1

for x < l, = b⊥1 for x > u, and 0 otherwise (where b⊥1 is P(x < l)/P((x < l)∪ (x > u)).
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C.1 Formal Result for IRF Estimation

C.2 Formal Results for Multivariate Weights

C.3 Implementation of Sensitivity Analysis Procedure

D.3

C.1 Full Expansion of FWL

Recall the general form from Section 2 of the paper

ωi =
cov(1a≤ϵt

, X⊥i )

var(X⊥i )

where X⊥i is the residual from regressing X i on the other elements in Xt . We can unpack this definition to get

things soley in terms of covariances and variance of terms of Xt , which amounts to an expansion of the FWL

theorem. To my knowledge, this expansion has not been done previously and for good reason – the full form

amounts to several messy recursions that offer absolutely no insight to write out. However to motivate the use of

deep learning to address one of the central issues in this paper, it may be useful to see why it’s difficult to conjure

up functional forms that will produce appropriate weighting.

For what follows, consider X to be a generic matrix of N covariates in a regression (which can include a vector

of 1s) and X i to be its i-th element. Keeping with notation from earlier, X⊥i is the residual from X i on the remaining

elements of X . WLOG, we will initially look at an example where i = 1. Further consider X⊥1
n to be regressing the

n-th element of X on its the remaining parts excluding X1. Then

X⊥1 = X1 −
N
∑

n=2

cov(X1, X⊥1
n )

var(X⊥1
n )

Xn

We can keep unpacking these terms but it should be clear that indexing is quickly going to become a nightmare

because the "exclusions" will not be in a consistent ordering across the components (and sub-components, and

sub-sub-components,...) of this summation. Things would have already got a bit messy notation wise had we done

a formula for a generic X⊥i . So we will have to break this up into several parts.

First, we will deal with the covariance terms and keep the variance terms fixed. Again using i = 1 for indexing

coherence and only focusing on the first term term in the sum above (n = 2), if we unpack a bit more we will have

cov(X1, X⊥1
n )

var(X⊥1
n )

=
cov(X1, X2)−

cov(X2,X⊥1:2
3 )

var(X⊥1:2
3 )

cov(X1, X3) + . . .

var(X⊥1
2 )

where X⊥1:2
3 are the residuals of regressing X3 on the remaining elements of X excluding X1, X2. To even coherently

define the remaining terms in the numerator, new notation has to be introduced to deal with the order in which
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variables are excluded from the "sub-regressions". To address this, we will define things in chunks. Again keeping

with the i = 1 and n= 2 case because it’s the cleanest, note that

cov(X1, X⊥1
2 )

var(X⊥1
2 )

=
C1,2 − C1,3

�

C2,3

V2,3
− C2,4

�

C3,4

V3,4V2,3
− C3,5(. . . )− . . .

�

− . . .
�

+ . . .

V1,2

where Cp,q represents the covariance between elements p and q of X and Vp,q is var(X
⊥1:p
q ). Ignoring the unavoidably

ugly denoting of what terms correspond to, we can see a light of coherency at the end of the recursion tunnel.

While there may now be a decipherable pattern to latch onto, this hasn’t made the cases that are not i = 1 and

n= 2 any less difficult to notate. So we will define a function relative to indexing. First observe

C1,3

 

C2,3

V2,3
− C2,4

�

C3,4

V3,4V2,3
− C3,5(. . . )

�

!

=
N−1
∑

k=2

(−1)k
Ck,k+1

∏k−1
j=1 C j, j+2

∏k
j=2 Vj, j+1

Everything else follows this structure, conditional on indexing. We can make an (ugly) generalization as follows.

Let A be generic rearrangement of X ; i.e., X has indexing {1, . . . , N} and A’s indexing can be any permutation of

this order. Define I {A}k as the index of X corresponding to the k-th element of A (formally: a mapping I(k; {A})).

Now define

S({A}) =
N−1
∑

k=2

(−1)k
CI{A}k ,I{A}k+1

∏k−1
j=1 CI{A}j ,I{A}j+2

∏k
j=2 V {A}j, j+1

with V {A}j, j+1 = var
�

X
⊥I(1: j;{A})

I{A}j+1

�

This will allow for a crawl towards completeness, burying as much of the index stumbling blocks as possible. Let

PN denote all permutations of {1,2, . . . , N}. Define P i,n
N ⊆ PN as permutations with i, n as the first elements:

P i,n
N =

�

σ ∈ PN : σ(1) = i & σ(2) = n
	

Then we can write the earlier expression cov(X1, X⊥1
2 ) in the general case as

cov(X i , X⊥i
n ) = Ci,n −Σi,n with Σi,n =

∑

σ∈P i,n
N

S({σ})

At the very beginning we started with

ωi =
cov(1a≤ϵt

, X⊥i )

var(X⊥i )

And now we can write cov(1a≤ϵt
, X⊥i ) compactly as

cov(1a≤ϵt
, X⊥i ) = cov(1a≤ϵt

, X i)−
N
∑

n≥1:n ̸=i

cov(1a≤ϵt
, Xn) ·

�

Ci,n −Σi,n

var(X⊥i
n )

�

We are not out of the woods yet because we skipped unpacking the variance terms. But once that has been done
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we will have finished "simplifying", in that arbitrarily complex regressions can be defined in terms of estimands

that feature only explicit variance and covariance terms.7

The strategy to deal with the variance terms will be very similar and hopefully easier to digest now that we

have some machinery to work with. Again to deal with the simplest case (i = 1) first,

var(X⊥1 ) = var(X1) +
N
∑

n=2

N
∑

m=2

cov(X1, X⊥1
n )

V1,n

cov(X1, X⊥1
m )

V1,m
Cn,m −

N
∑

n=2

cov(X1, X⊥1
n )

V1,n
2C1,n

using the notation as before for V and C . Once more, we have a situation where everything will follow this pattern,

less indexing. The first layer is simple to write

var(X⊥i ) = var(X i) +
N
∑

N
∑

m,n≥1:m,n̸=i

Σi,n

V1,n

Σi,m

V1,m
Cn,m −

N
∑

n≥1:n̸=i

Σi,n

V1,n
2Ci,n

The only thing remaining is to expand this definition so that it holds as terms are continually added to ⊥ in X⊥i

(i.e., in the FWL regressions, some terms have already been partialed out and won’t be included). To do this, we

need to make the indexing of Σi,n a bit more flexible. Define

SV (i; {O}) = var(X
⊥{O}
i ) = var(X i) +

N
∑

N
∑

m,n≥1:m,n/∈O

Σc
{O},n

SV (n; {O, i})

Σc
{O},m

SV (m; {O, i})
Cn,m −

N
∑

n≥1:n/∈O

Σc
{O},n

SV (n; {O, i}
2Ci,n

where O is a set of unique integers o ∈ [1, N]\{i} and

Σc
{O},n =

∑

σ∈P{O}−

S({σ))

with P{O}− =
¦

σ ∈ ZN−|O| : σ∪ {O} ∈ PN & ∀n,∄m s.t σ(m) = O(n)
©

.

Noting that for any σ ∈ PN , SV
�

i,
�

σ\{i}
	

�

= var(X i), our nightmare is finally over.

C.2 Deep Learning Implementation

Work is still ongoing to fine tune the algorithm and therefore to sharpen these recommendations. Also, the Online

Appendix from this point forward is a work in progress, but for the remaining sections its a matter of compilation,

rather than work that remains to be completed.

One consideration is complexity. I’ve found that convergence occurs rapidly, but convergence may not be to a

collection of satisfactory functions (i.e., the neural net essentially gets stuck at a local minima). So while this may

be more feasible without a GPU, the iterative nature of refining the loss computation may make this less feasible

without access to hardware designed for efficient deep learning training. I hope to eventually share functions on

this paper’s GitHub repository that work well for standard normal shocks. When applied to other shock series, the

performance will not be perfect but may be acceptable.

7Of course, (X ′X )−1X ′Y is a better simplification under any sensible definition. "disambiguating" may be more appropriate
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C.3 Standard Errors for Generated Regressors

Recall the generated regressor functions defined in Section 3
�

fi

	4

i=1. For clarity, we are interested in functions of

a shock ϵt that is continuously distributed on a ∈ I ⊂ R. Each of this function has a designated "peak" ci and a set

Ii with endpoints lefti and righti). These functions are defined in terms of the empirical CDF FN (·).

Specifically, for each a ∈ I

fi(a) =











0 a /∈ [lefti , righti)
−[FN (ci)− FN (lefti)]−1 a ∈ [lefti , c)
[FN (righti)− FN (ci)]−1 a ∈ (c, righti)

with slight abuse of notation if lefti = −∞. In a regression of y on
�

fi

	4

i=1, the estimands will be defined in terms

of the CDF F(·). Define pi L as F(ci)− F(lefti) and piR = F(righti)− FN (ci). The estimand βi on fi is

βi =
cov(y, fi)

Var( fi)
=

ȳiR − ȳi L
1

pi L
+ 1

piR

,

where ȳi L and ȳiR are the means of y on the subsets of Ii given by pi L and piR. To see this, recall fi is mean 0. So

cov(y, fi) = E[y fi] = −
1

pi L
E[y ·1[lefti ,ci)] +

1
piR
E[y ·1[ci ,righti)] = −

1
pi L

ȳi L · pi L +
1

piR
ȳiR · piR = ȳiR − ȳi L

Because this estimand is formed with respect to a generated regressor, we need to adjust the standard errors.

Adjustment is done using the delta method. Differentiating

∂ βi

∂ pi L
= βi ·

piR

pi L(pi L + piR)
and

∂ βi

∂ piR
= −βi ·

pi L

piR(pi L + piR)

The adjustment takes the form of 8

�

∂ βi

∂ pi L

�2

Var(pi L) +

�

∂ βi

∂ piR

�2

Var(piR).

Using sample analogs, standard errors are the square soot of the sum of the usual Huber-White variance and

β̂2
i

N

�

p̂iR(1− p̂i L)
p̂i L(p̂i L + p̂iR)2

+
p̂i L(1− p̂iR)

p̂iR(p̂i L + p̂iR)2

�

where ÓVar(pi L) =
p̂i L(1−p̂i L)

N (and similar for piR).

C.4 Details for Empirical Application in Section 4.2

Following Ramey (2016), outcome variables are the Consumer Price Index (CPI), industrial production, 1 year

treasury yields, excess bond premium (Favara et al., 2016), unemployment, and add real consumption expenditures

(all monthly frequency).9 Control variables also include lagged interest rates, monetary policy uncertainty (Husted

8Note that fi is not differentiable at ci
9Some of these variables are highly non-stationary (McCracken and Ng, 2016). Montiel Olea and Plagborg-Møller (2021) show LP is

remarkably robust to the presence of unit roots and non-stationary variables. I find some anecdotal support for this: estimating in differences
and summing for the cumulative effect in levels produces very similar IRFs to estimating in levels directly
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et al., 2020), an indicator for the ZLB, and a healthy number lags (12) of both outcome and controls following

our discussion of standard errors. Data is sourced from FRED unless noted otherwise and the maximum sample

periods are retained. Based on the availability of the shock series used in the paper, this is ultimately not an issue,

but in general pre-1983 target funds rate data should be discarded to reflect incongruities in Fed policy norms

(Thornton, 2006; Aruoba and Drechsel, 2025). Related, to aggregate to changes as intended by policymakers, a

few earlier instances of "intermediate" changes (e.g., adjust 12 basis points immediately and 25 more in a few

weeks) are cumulated. This adds another reason to be concerned about temporal aggregation bias (Jacobson et al.,

2024) and likely to discard results at early horizons. I focus on CPI and the joint picture of output painted by

industrial production, consumption, and unemployment in order to take the findings directly to models. Outcome

variables are cumulative log differences, yielding an approximate percent change interpretation: bαh is represents

the percent change in levels h periods after a shock at t. At h = 12, this takes a nice form of year over year growth.

The LP framework described in the paper can be used to illustrate possible nonlinearities, which I refer to as

size and size effects. The most straightforward way to think of these effects is as functions of parameters. For the

simple case of plotting in levels, the objects of interest are

Size Effecth : α̂B
h − α̂

S
h Sign Effecth : α̂P

h + α̂
N
h

A size effect exists if we can conclude the difference in the big and small (regime) coefficients are distinct from 0

and a sign effect exists if positive and negative coefficients have different magnitudes. This is complicated slightly

by wanting to allow for both types of non-linearities simultaneously: we want to see if a size effect exists for

both cuts and hikes and a sign effect exists for both big and small changes, in other words 4 graphs per outcome

variable. Grouping is thus by type of nonlinearity, rather than outcome.

For sign effects, we can interpret positive statistically significant results as evidence for a "pushing on a string"

narrative, the idea that it’s more difficult (especially in recessions) for expansionary monetary policy to stimulate

the economy than it is for contractionary policy to suppress it. Even if the individual point estimates go against

what standard theory might suggest, we abstract from the notion of puzzles by simply focusing on one estimate

relative to the other. For instance, if the coefficient of a big cut on CPI is -3 and the coefficient for a big hike is 2,

these estimates are consistent with the string story because the the big hike’s contractionary power, albeit a lack of

one, is still greater than the expansionary effect of a big cut.

Before gauging how models holds up to the data-based findings presented in the main body of the paper,

it’s important to have a sense of what, if anything, can make these results weaken when pushed. Changing the

lag order, adding and removing controls, estimating in differences vs. levels, different measures for inflation,

bias-correcting point estimates (Herbst and Johannsen, 2024) and using LP instead of LP-IV in general do not yield

IRFs with different interpretations, even under various combinations of these factors. One area where there is
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some sensitivity is sample selection and size, which is especially not surprising given the zero lower bound period.

One option would be using a non-linear filtering procedure (e.g., Farmer, 2021) to construct a shadow interest

rate, or a measure of how interest rates "would have moved" if the ZLB didn’t bind.

A more involved critique of model-free estimation is an inability to account for state-dependence. For example,

many past efforts try to allow for responses in boom and bust cycles to be asymmetric. With respect to interest

rate shocks of a given size, another worry could be that beliefs about the future path of policy may not be updated

in the same for different histories of action. The econometric concern is that these local projection coefficients

amount to weighted averages and these weights could be biased if the joint distribution of the shock and state

space has disparate behavior from a product of their marginals. In a regression context, this essentially amounts to

the difference between including a variable as a control and additionally interacting it with the shock. The work of

Rambachan and Shephard (2025), Kolesár and Plagborg-Møller (2025), and results in the main body of the paper

show that these estimates average out under arbitrary nonlinearities, so within this setting there is less room for

concern. But because of the limited sample size, it’s worth taking note of other, more directed approaches. Jordà

(2023), following the revelation of Gonçalves et al. (2024) that the previous default methodology can severely

distort impulse responses, provides a framework incorporating interaction terms to estimate state-dependent

effects. Gonçalves et al. (2024) themselves suggest non-parametric estimation, which has an over-parameterization

problem with or without instrumenting (i.e., in either case, control variables must be shed).
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C.5 Details for Quantitative Application in Section 4.2

Description Equation #

Consumption Euler Equation 1= βEt

h
�

Ct+1
Ct

�−τ Rt

Πt+1Ãt+1

i

(1)

Definition for Real Wages ∆w
t =

Wt
Wt−1
· Ãt (2)

Resource Constraint Gt−1
Gt
· Yt + Ct = Yt(1−Φ

p
t )−Wt Yt ·Φw

t (3)

Wage Equation, Household’s problem χh
λwWt

Cτt Y
1
ν

t + (1−Φw
t )
�

1− 1
λw

�

= (4)

∆
wnom
t ·Φ

′w
t − βEt

h
�

Ct+1
Ct

�−τ Πt+1(∆w
t+1)

2

Ãt+1
Yt+1 ·Φ

′w
t+1

i

Price Equation, Intermediate Firms problem (1−Φp
t ) + βEt

h
�

Ct+1
Ct

�−τ
Φ
′p
t+1Πt+1Yt+1

i

= µt
Λt
+Φ

′p
t Πt (5)

Hours Equation Wt = (1−Φ
p
t )−µt (6)

Adjustment Costs, Nominal Wages Φw
t =

φw
ψ2

w

�

e−ψw(∆
wnom
t −γπ∗) +ψw(∆

wnom
t − γπ∗)− 1

�

(7)

Adjustment Costs, Prices Φ
p
t =

φp

ψ2
p

�

e−ψp(Πt−π∗) +ψp(Πt −π∗)− 1
�

(8)

Derivative, Adjustment Costs Nominal Wages Φ
′w
t =

φw
ψw

�

1− e−ψp(∆wnom
t −γπ∗)

�

(9)

Derivative, Adjustment Costs to Prices Φ
′p
t =

φp

ψp

�

1− e−ψp(Πt−π∗)
�

(10)

Taylor Rule Rt = exp(rt); rt = ρr rt−1 + (1−ρr)r∗t +σrϵr (11)

TFP Growth Ãt = exp(at); at = (1−ρa) logγ+ρaat−1 +σaϵa (12)

Government Spending Shocks Gt = exp(gt); gt = (1−ρg) log g∗ +ρg gt−1 +σaϵg (13)

Price Markup Shock Λt = exp(λt); λt = (1−ρp) logλpss
+ρpλt−1 +σpϵp (14)

Output change ∆
y
t = Yt/Yt−1 (15)

Nominal wage change ∆
wnom
t =∆w

t Πt (16)

Interest rate target r∗t = log
�

γ
β ·π

∗
�

+ψ1 log
�

Πt/π
∗
�

+ψ2

�

at + log
�

∆
y
t /γ

�

�

(17)

• For the set of draws that came out of our Metropolis- Hastings routine, I simulated data of 400 observations

for each group of parameters to align with the US data sample size. Analogous control variables are included

(lagged interest rates, zero lower bound, unemployment, output and interest rate variance) and plots are in

terms of standard deviations to abstract away from any differences between model-simulated and US data.

This is described and justified further in the next subsection.

• The priors are largely from Aruoba et al. (2017). Because of the difference in sample period, I scaled down

the priors for annualized output growth (µy) and inflation (µπ), as well as β−1. In fact, it’s actually not

possible for this model to generate a steady state that matches the data. Steady state interest rates are

µy + µπ + 400(β−1 − 1). If µy and µπ are picked to match inflation data, you must pick β > 1 to match

interest rate data.

• Some other fixes to the original replication code are detailed here.
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• For consistency in the comparative static illustrations, it was necessary to make sure this mode line was the

same across plots, but that meant the same series of shocks would need to be used for all sets of simulated

data, which could paint a misrepresentative picture for a short sample size. So I plotted the median estimate

for 100 samples for each parameter group (for simulation i, seed was set to i = {1, . . . , 100}).

– Ideally, this would be done for the Bayesian IRFs, but that would take a month to run. Implementation

needed to be extremely parsimonious – because each loop of the LP file performs 25*number of outcome

variables calls to regress, I randomly selected 10,000 draws of the post burn-in M-H output.

h
0 1 2

Big Cut -18.8% -5.5% -1.7%
Big Hike 36.6% 5.5% 0.4%

Table 1: Average % Deviation from i∗, h periods after large change in it

Next, I show that the model is capable of generating any type of nonlinearity on impact, but the effects dissipate

quickly. To make efficient use of space, the exact figures are relegated to the very end of the Appendix, but there

are hyperlinks to each. Again, what we learned from this exercise is that any sort of nonlinearity desired can be

generated on impact using the right combination of asymmetry parameters, but it does not last for even one period

longer in most cases.

Size Effects

Description Anything Interesting? (all at h= 0) Link

1 ψp ↑ (slightly) amplifies negative size effect for hikes on π at h= 0 Figure 3

2 ψp ↓ (slightly) amplifies all h= 0 size effects except for hike on π Figure 4

3 ψw ↑ (slightly) increases the positive size effect for cuts on Y at h= 0 Figure 5

4 ψw ↓ No. Figure 6

5 ψp ↑, ψw ↑ amplifies size effect (-) of cuts on Y , depresses size effect (+) of hikes on Y Figure 7

6 ψp ↓,ψw ↓ (slightly) amplifies negative size effect for hikes on π at h= 0 Figure 8
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Sign Effects

Description Anything Interesting? (all at h= 0) Link

1 ψp ↑ depressed all h= 0 sign effects except for small changes on π Figure 9

2 ψp ↓ low values reversed the direction of the sign effect for big changes on π. Figure 10

3 ψw ↑ Depresses small change on Y size effect and amplifies everything else Figure 11

4 ψw ↓ (slightly) amplified sign effect of big changes on π and small changes on Y Figure 12

5 ψp ↑, ψw ↑ depressed sign effect of small changes on Y and amplified everything else Figure 13

6 ψp ↓,ψw ↓ reversed the direction of sign effect for big changes on π Figure 14

C.6 Estimation in Terms of Standard Deviations

In a linear regression, coefficients are the estimated effect of a marginal (size), positive (sign) change. If we

normalize our previous definitions by the standard deviation of the coefficient corresponding to this linear "default",

we have an alternative formulation of size and sign effects in terms of standard deviations instead of percent change

in levels at a given horizon. For example, if α̂BC−α̂SC
σSC

= 3, the interpretation is that the big cut coefficient amounts

to a 3 standard deviations away realization of the small cut coefficient. Additional intuition can be gleaned by

noticing that if we instead normalized by the standard deviation of the entire (original) definition, we would

simply have a t-statistic. This approach has the advantage of the y-axis having a uniform representation across

all outcomes of interest and arguably removes some of the subjectivity implicit in deciding what % constitutes a

meaningful effect for a given variable-horizon combination. Put differently, this representation sends a similar

signal to the results of a hypothesis test (is there enough evidence from data to infer these parameters are drawn

from distinct distributions), but unlike a t-statistic the units lend themselves more to economic meaning (moment

of the distribution for our baseline coefficient, rather than a general normal distribution). Another motivation is

model comparison. In principle, percent change is a "unitless" point of comparison. But in a small sample setting,

having parameters in a DSGE model that dictate growth rates can induce distortions in scaling and correlations

relative to time series data that add meaningless noise to analogous estimations of our objects of interest. By using

standard deviations, everything is normalized by whatever scale persists in the DGP, meaning the finite sample

idiosyncrasies are softened. Ultimately, percent change in levels carries more real world weight, but standard

deviations add indispensable context.
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E.1 Figure and Equation Reference

Figure 3: (click to go back to tables)

Figure 4: (click to go back to tables)
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Figure 5: (click to go back to tables)

Figure 6: (click to go back to tables)
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Figure 7: (click to go back to tables)

Figure 8: (click to go back to tables)
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Figure 9: (click to go back to tables)

Figure 10: (click to go back to tables)
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Figure 11: (click to go back to tables)

Figure 12: (click to go back to tables)
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Figure 13: (click to go back to tables)

Figure 14: (click to go back to tables)
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Figure 15: Standard Normal Shock with Example 6

Example 1: πt = α+ β1 x t · 1x t≤0 + β2 x t · 1x t>0 + ut

Example 5: πt = α− β2 ·1−x t∈(0,1] − β3 ·1−x t<1 − β4 ·1x t∈[0,1] + ut

Example 4: πt = α− βsmall, neg ·1−x t∈[
1

100 , 5
4 ]
− βbig, neg ·1x t<

5
4
+ βsmall, pos ·1x t∈[

1
100 , 5

4 ]
+ βbig, pos ·1x t>

5
4
+ ut
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