
Lidi Zheng, Google

gRPC Deep Dive: Prevent Your Service From 

Overtaking Itself



Agenda

● What is Flow Control?

● Why is Flow Control important?

● How gRPC solves it?



gRPC is About Distributed Systems

Feature Highlights

● Bi-directional streaming RPC

● Built-in Flow Control
● Load balancing (client-side/look-aside)

● Service config

● Interceptors

● Compression



What is Flow Control?

Flow control is the mechanism to throttle the traffic in order 

to protect endpoints that are under resource constraints.



Technically, it’s a scaling problem.

Computational power difference
● Server : Clients (1:102~1:105)

Network infrastructure bottleneck
● Too many moving parts
● Difficult to debug

Maximize Concurrency
● Buffering / Caching
● Message queues

Why we need Flow Control

...ClientClientClient
ClientClientClient

Server Server

Proxy



Potential Results

Application

Sender

Transport

NIC

Busy Application

Receiver

Transport

NIC

OOM
Impact 

Upstream



Solution: Push Back

Application

Sender

Transport

NIC

Busy Application

Receiver

Transport

NIC

Please slow downOkay, I will.



Without Flow Control

DB Auth Back
End Proxy Front

End



Without End To End Coverage

DB Auth Back
End Proxy Front

End

Is this my 
fault? Or mine?



With Flow Control From End To End

DB Auth Back
End Proxy Front

End



• Need to be performant

• Fairness between RPCs

• Throttle based on performance

• Flow Control From End To End

Challenges

Istio

DB Auth Front
End

Audit TF Front
End

Back
End Proxy Front

End



Flow Control vs. Congestion Control

Flow Control Congestion Control

Goal Protect receiver from overloaded Protect the network itself

Trigger Performance of the receiver Bandwidth; loss rate

Overhead Small Large

Sender ReceiverNetwork

Flow
Control

Flow
Control

Congestion
Control



Example: TCP Congestion Control

Linux Users: 

Common Algorithms

• Reno

• Cubic

General Strategy

• Increase sending rate if ACK

• Decrease if not missed



Example: TCP Flow Control

Linux Users: 

TCP flow control

• Stop reading kernel buffers

• Receiver drops further packets

• Receiver being protected

Trigger Impact

• Reduced throughput

• Degraded multiplexing



Why Is Multiplexing Important?

Check Email

Your
Computer

Internet
(ISP)

Download Documents

Browse Websites

Commit New Codes

Download This 80G Game



HTTP/2 Flow Control
Algorithm similar to Token Bucket

Features

• Highly Performant

• Fine grained throttling

• Frame priority

Receiver: ready for more bytes

Sender: stop if quota depleted

Flow Control
Window

WINDOW_UPDATE
Frame

DATA / HEADER / misc.
Frame

o Stream (RPC) / Connection



HTTP/2 Flow Control
Even with full awareness of the current 

BDP, implementation of flow control can 

be difficult… Failure to do so could 

lead to a deadlock when critical 

frames… are not read and acted upon.

From RFC 7540 (HTTP/2)

Receiver: ready for more bytes

Sender: stop if quota depleted

Flow Control

Window

WINDOW_UPDATE

Frame

DATA / HEADER / misc.

Frame

https://tools.ietf.org/html/rfc7540


Recap: Push Back

Application

Sender

Transport

NIC

Busy Application

Receiver

Transport

NIC

Please slow downOkay, I will.



Solution: gRPC
• Natively integrated with flow control

• Streaming API aware of push backs

• Validated in Google’s production



Problem: Initial Window Size

Data

Window Size

Data

Window Size

I’m idling!

Data

Window Size

Data



Solution: BDP Estimation
Goal: Intelligently avoid triggering flow control

Bandwidth Delay Product: the amount of data that can be in transit in the network.

• Turned on in C-Core / Golang

• Measures BDP through PING frames and a PID controller

• Sets the initial window size to BDP

Flying Bytes On The Wire

Round Trip Time

Bandwidth

https://en.wikipedia.org/wiki/PID_controller


• Need to be performant

• Fairness between RPCs

• Throttle based on performance

• Flow Control From End To End

Recap: Challenges

Istio

DB Auth Front
End

Audit TF Front
End

Back
End Proxy Front

End

• gRPC is performant

• HTTP2 flow control supports multiplexing

• gRPC has BDP estimator

• gRPC has built-in Flow Control

• Solved by gRPC J



Snippet: gRPC Go



Snippet: gRPC Python



Snippet: gRPC Java

Inbound Traffic

• Automatic flow control

• Won’t request next message until 

the existing one is consumed

Outbound Traffic

• isReady()

• setOnReadyHandler()



Advanced: gRPC Message Buffering

Special Scenarios

• E.g. Short-Bursts of Huge Queries

Alternatives

• Implement application layer buffer

• Let gRPC queue the messages

o Core / Java Only



Advanced: C-Core Based Implementations



Advanced: gRPC Java

Inbound Traffic

• Disable flow control before start

• Needs to call request(int)

Outbound Traffic

• Ignoring the isReady() flag

• Infinite buffering!



Take-Away

• What is Flow Control?

• Why is Flow Control important?

• How gRPC solves it?

o Flow control throttles the traffic to protect endpoints

o Faster senders may cause excessive buffering on both sides

o gRPC provides easy-to-use build-in flow control



Q&A


