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Motivation

Run a large scale, latency sensitive application like ebay's Search Engine on K8s and 

the design choices we made to achieve this feat.
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http://sigir-ecom.weebly.com/uploads/1/0/2/9/102947274/ebay_search_architecture.pdf


eBay’s k8s 
deployme
nts

eBay K8s Footprint

v 60+ production Clusters
v Multiple VPCs & environments

v Dev/Staging/Production. Flat/Overlay network.
v Multiple 2k+ node sized clusters

v 160k+ pods. 30k+ hosts, all BMs for production.
v Various production workloads

v Web, DBs, Search Engines, Hadoop, AI/machine 
learning, etc.

v On the Edge
v Envoy proxy / Software LBs



The Why ?

Speed

Scale Automate

Flexible



Search Node View on K8s
• Query Serving Pod.

• Main query server container.
• Log exporter.
• Metric exporter.

• Data Distribution Agent Pod.
• Metric Collection Pods.
• Local disk persistent volumes (PVs).
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Data sharing between Pods
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Out of the Box Performance

• At 18-20% CPU – 3.2K QPS

K8s Pod Bare Metal

• At 18-20% CPU – 3.6K QPS



What moved the curve?

• Kernel
• Latest kernel on K8s nodes.

• CPU & Power
• Tuned p-state and c-state to leverage turbo boost.

• Networking
• Ipvlan

• Ipvlan for high performance.



Performance Optimizations
K8s Pod Bare Metal

• At 78-80% CPU – 9.5K QPS • At 78-80% CPU – 9.5K QPS



Lessons Learned

• Breaking a monolithic application into independent micro services is difficult.

• Keeping operational migration minimal at this stage is more important.

• Design choice of having data distribution pod run as a Daemonset instead of a side-

car posed challenges that could have been avoided.

• Node Remediation with Local PVC not yet fully ironed out.

• Performance optimizations for low latency applications.



Future Work

• Move to max unavailable update strategy for STS.

• Volume Cloning.

• Node Remediation with Local PVCs.

• Multi cluster support.

• Leverage pod priority and preemption.



Conclusion

Run a latency sensitive, large scale stateful application on K8s 

along with agility, flexibility and automation using K8s framework 

with minimal performance impact.

* All version strings have some significance in slide 9 & 10. Have fun !!!


