


Yashwanth Vempati (K8s platform)
Mohnish Kodnani (Search)

eBay Search On K8s



Motivation

Run a large scale, latency sensitive application like ebay's Search Engine on K8s and 

the design choices we made to achieve this feat.



eBay Search Background

1.4 Billion 
Active 

Listings

300K QPS

30-40% 
Data Center 

Footprint

5 9's 
availability

Cassini



Architecture
Software 

Load 
Balancer

Top Level 
Aggregators

Low Level 
Aggregators

Low Level 
Aggregators

Low Level 
Aggregators

Low Level 
Aggregators

Query Server 
Shard 1

Query Server 
Shard 20

Query Server 
Shard 21

Query Server 
Shard N

Query Server 
Shard 1

Query Server 
Shard N

Active Listings Sold Listings

Architecture

usc sweatshirt

Query 
Transformers

usc sweatshirt hoodies

usc sweatshirt hoodies usc sweatshirt hoodies

http://sigir-ecom.weebly.com/uploads/1/0/2/9/102947274/ebay_search_architecture.pdf


eBay’s k8s 
deployme
nts

eBay K8s Footprint

v 60+ production Clusters
v Multiple VPCs & environments

v Dev/Staging/Production. Flat/Overlay network.
v Multiple 2k+ node sized clusters

v 160k+ pods. 30k+ hosts, all BMs for production.
v Various production workloads

v Web, DBs, Search Engines, Hadoop, AI/machine 
learning, etc.

v On the Edge
v Envoy proxy / Software LBs



The Why ?

Speed

Scale Automate

Flexible



Search Node View on K8s
• Query Serving Pod.

• Main query server container.
• Log exporter.
• Metric exporter.

• Data Distribution Agent Pod.
• Metric Collection Pods.
• Local disk persistent volumes (PVs).



Search Grid Deployment
Matrix deployment 

Controller

Service Controller

HPA Controller

Metrics 
Server

Create CRD

Create STS

Create Services

Scale STS

STS Shard 1 STS Shard 2 STS Shard 3 STS Shard 4

Search Grid

API Server



Data Distribution

Data Distribution 
Controller

Grid metadata

STS Shard 1 STS Shard 2 STS Shard 3 STS Shard 4

Search Grid

API Server

Data Deployment 
Orchestrator

Create CRD



Data sharing between Pods

Data 
Distribution 
Daemonset

Pod.

Query Serving 
STS Pod

1. Create Pod 
with
PVC Template

2. Restart Daemonset Pod 
on same Node.

Mutating Web 
Hook 3. Pod Mutation Request

A Bare Metal Node 

PVC

Local
ssd

4. Get all the PVCs for the 
pod on the same node.

5. Attach PVCs 
as Volumes

API Server



Out of the Box Performance

• At 18-20% CPU – 3.2K QPS

K8s Pod Bare Metal

• At 18-20% CPU – 3.6K QPS



What moved the curve?

• Kernel
• Latest kernel on K8s nodes.

• CPU & Power
• Tuned p-state and c-state to leverage turbo boost.

• Networking
• Ipvlan

• Ipvlan for high performance.



Performance Optimizations
K8s Pod Bare Metal

• At 78-80% CPU – 9.5K QPS • At 78-80% CPU – 9.5K QPS



Lessons Learned

• Breaking a monolithic application into independent micro services is difficult.

• Keeping operational migration minimal at this stage is more important.

• Design choice of having data distribution pod run as a Daemonset instead of a side-

car posed challenges that could have been avoided.

• Node Remediation with Local PVC not yet fully ironed out.

• Performance optimizations for low latency applications.



Future Work

• Move to max unavailable update strategy for STS.

• Volume Cloning.

• Node Remediation with Local PVCs.

• Multi cluster support.

• Leverage pod priority and preemption.



Conclusion

Run a latency sensitive, large scale stateful application on K8s 

along with agility, flexibility and automation using K8s framework 

with minimal performance impact.

* All version strings have some significance in slide 9 & 10. Have fun !!!


