

Alois Reitbauer, Lei Zhang

Defining Reference Model for Cloud-Native
Application Delivery
A Deep Dive Session from CNCF App Delivery SIG

The App Mgmt & Delivery Ecosystem

source: https://landscape.cncf.io/

Take a closer look ...

Application Definition?
● YES!

○ Description for application
● templates/

■ Metadata for application
● Chart.yaml

○ Name
○ Description
○ Maintainers
○ Links to doc
○ …

■ Resources composed the application
● E.g. chart.yaml, dependencies etc

https://github.com/helm/charts/tree/master/stable/burrow/templates
https://v3.helm.sh/docs/topics/charts/

Take a closer closer look ...

● 🤔 Emm ...
○ Package management:

■ Search and browse chart repo, fetch charts
■ Parameterization & templating

● Values.yaml
● gotpl, Lua (?)

○ Release mgmt:
■ helm upgrade, history, rollback

○ App lifecycle mgmt hooks:
■ "helm.sh/hook": post-install

○ and more…

Are there part of “Application Definition”?

What is project “x” doing, really?

KustomizeHelm Ksonnet

🧐 Are they “Application Definitions”?

https://github.com/kubernetes-sigs/kustomize
https://helm.sh/
https://github.com/ksonnet/ksonnet

For better answer to “what is project X”

The Model of Application Delivery

https://docs.google.com/document/d/1gMhRz4vEwiHa3uD8DqFKHGTSxrVJNgkLG2WZWvi9lXo/edit#bookmark=id.qv45kp7nb29b

Application Definition & Packaging

● Application Definition:
○ The answer of “what to run”
○ The “start” of application delivery lifecycle
○ In real practice, mostly expressed as app descriptor or app

model

Topic 1: App Definition & Packaging

Application Definition & Packaging

● App descriptor:
a. Metadata for application as a whole, regardless of it’s

instantiated or not
b. Means for tracking resources composed the application

App descriptor could be in many forms (see next slides) ...

Topic 1: App Definition & Packaging

App descriptor could be simple

single container multiple containers multiple collaborative
containers

replicated collaborative
containers group

“Metadata for application as a whole”
😀

“Means for tracking resources composed the application?”

Topic 1: App Definition & Packaging

Topic 1: App Definition & Packaging

Finding resources composed the app ...

🥰 Your app description

😰 The resources composed your app

Service, CRD, Ingress, SLB, RBAC, Deployment
Image, PVC/PV, ConfigMap, Secret ...

Hence app descriptor could be sophisticated

Helm (Chart.yaml + templates/ + values.yaml) Application CRD (app-crd.yaml + K8s YAMLs)

app metadata

app metadata

Topic 1: App Definition & Packaging

https://helm.sh/
https://github.com/kubernetes-sigs/application

Topic 1: App Definition & Packaging

Application Definition & Packaging

● App model: a “opinionated” form of app descriptor
a. Metadata for application as a whole, regardless of it’s

instantiated or not
b. Means for tracking resources composed the application
c. A declarative spec for defining information above

Topic 1: App Definition & Packaging

E.g. AWS Serverless App Model (SAM)

AWS Serverless App Model (SAM), Spec
First announcement: Nov 18, 2016 A CloudFormation based application descriptor for AWS serverless workloads

https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md
https://aws.amazon.com/about-aws/whats-new/2016/11/introducing-the-aws-serverless-application-model/

E.g. Open Application Model (OAM)

Source: https://github.com/oam-dev/rudr/blob/master/docs/README.md

Component: metadata for app component Trait: metadata for platform capability

Topic 1: App Definition & Packaging

https://github.com/oam-dev/rudr/blob/master/docs/README.md

Topic 1: App Definition & Packaging

Real World

E.g. Open Application Model (OAM)

Components + Traits = Application

deployment HPA

Topic 1: App Definition & Packaging

Application Definition & Packaging

● Application parameter & configuration
○ The way to customize fields and parameters in app

descriptor/model

replicas: {{ .x }}

replicas: 1

replicas: 3

Testing

Prod

Application Definition & Packaging
1. Templating

a. Helm: easy to use, while break integrity of YAML
2. Overlay

a. Kustomize: keep integrity of YAML, GitOps friendly layout, while higher learning curve
3. DSL

a. jsonnet/ksonnet/isopod: powerful, no YAML, highest learning curve

More interesting attempts:

replicatedhq/ship: i.e. render charts w/ default
values beforehand, and then use kustomize to
patch them

a.k.a “kustomize” helm charts instead of
templating

Topic 1: App Definition & Packaging

https://kubectl.docs.kubernetes.io/pages/app_composition_and_deployment/structure_directories.html
https://jsonnet.org/articles/kubernetes.html
https://ksonnet.io/
https://github.com/cruise-automation/isopod
https://github.com/replicatedhq/ship

Application Definition & Packaging

● Application packaging:
○ The way to bundle app descriptors/models into a deployable

unit so for easier searching and distribution

1. Any compression form
a. *.tar.gz, *.zip

2. OCI artifacts
a. CNAB, docker image, Helm charts

3. Helm ecosystem
a. Helm charts + Helm Hub

Topic 1: App Definition & Packaging

https://cnab.io/
https://hub.helm.sh/

Checkpoint

app descriptor

app packaging

app parameter & configuration app parameter & configuration* app parameter & configuration*

* its app descriptor is raw K8s API resource

OAM/AWS SAM

app model Topic 1

Topic 1.5

Topic 1: App Definition & Packaging

https://github.com/oam-dev/rudr
https://github.com/awslabs/serverless-application-model

Application Deploy & Rollout

Application Deploy & Rollout
copyright: weaveworks blog

app
definition

From deployable application
artifacts to running
instances, and keep them
running until been terminated.

Normally, achieved by a workflow composed by app delivery actions.

App definition
executor

A clear boundary between CI & CD: artifacts ready

YAML

Topic 2: App Deploy & Rollout

https://www.weave.works/blog/five-steps-to-achieve-continuous-delivery

App Delivery Workflow and Actions

Action 1 Action 2 Action 3 Action 4

workflow

copyright: Spinnaker blog

Driven by Git as source of truth (or other version control)
● Well-known git review, approve, merge, rollback actions as the triggers of

this workflow -- GitOps

Pipeline style workflow:

Tekton, Argo Workflow, Spinnaker

Event style workflow:

Keptn (knative eventing based)
Topic 2: App Deploy & Rollout

https://www.spinnaker.io/concepts/#application-deployment
https://tekton.dev/
https://argoproj.github.io/argo/
https://www.spinnaker.io/
https://keptn.sh/

Topic 2: App Deploy & Rollout

Action Executor: App Rollout Projects

Flagger as example:

1. Rollout Controller
a. Flagger

2. Traffic Management Controller
a. Mesh Provider

i. K8s Service, istio, linkerd,
appmesh, nginx, gloo,
supergloo

b. SMI
3. Workload Controller

a. K8s Deployment Controller

1

2

3

Rollout with strategies: the way to upgrade/rollback the application seamlessly w/o breaking its users. workload ref

rollout strategy

https://github.com/weaveworks/flagger
https://docs.flagger.app/tutorials/flagger-smi-istio

Fun Fact

Helm actually has several functionalities sit in Topic 2:

helm upgrade
helm history
helm rollback

"helm.sh/hook": post-install

While with Helm 3 released, seems Helm now focus more on Topic 1 & 1.5.

Topic 2: App Deploy & Rollout

https://helm.sh/blog/helm-3-released/

Workload Instance Automation & Operation

Workload Instance Automation & Operation

● A K8s Deployment with `replicas=3`: has 3 workload instances which are identical to each
other

● A MySQL Cluster managed by MySQL Operator with `size=5`: has 5 workload instances which
are not identical to each other.

Workloads in K8s world:
● Deployment, StatefulSet, DaemonSet, Job … (K8s SIG-APP)
● Operator
● OpenKruise
● …

Emm, what is workload instances?
● Pods managed by workload controllers

○ but could be function or VM in other context.

Topic 3: Workloads

https://github.com/operator-framework/awesome-operators
https://github.com/openkruise/kruise

What’s the difference?

Fun fact:
1. Though with the name of Advanced Deployment, Argo Rollout is a Topic 2

project:
a. It focuses on performing Blue-green/Canary deployment at application

level (Topic 2)
b. By leveraging ReplicaSet as workload instance level controller (Topic 3)

The outstanding difference:
● Topic 2 focuses on “application level” operations

○ Blue-green, Canary, A/B test, traffic split, app rollout, progressive deploy, GitOps
...

● Topic 3 focuses on “workload instance level” operations
○ Scale in/out, maxUnavailable/maxSurge, partition, Pod rolling update ...

Topic 3: Workloads

https://github.com/argoproj/argo-rollouts
https://argoproj.github.io/argo-rollouts/#use-cases-of-argo-rollouts
https://argoproj.github.io/argo-rollouts/#use-cases-of-argo-rollouts
https://argoproj.github.io/argo-rollouts/#how-does-it-work

Topic 3: Workloads

Why decouple Topic 2 and Topic 3?

Q: Can I do Flagger Canary deployment for Operator based
applications with this spec?

myapp.com/v1alpha

Operator

Do not “vendor lock” developers by your rollout capabilities! (Topic 2)
And let them choose their own workloads (Topic 3) freely!

An application could be managed by Deployment controller, but also
by StatefulSet and Operator etc. Can we apply same Canary
deployment strategy to them as well?

https://docs.flagger.app/usage/nginx-progressive-delivery

Summary: let’s practice the model!

Kubernetes

K8s Deployment
(canary)

K8s Deployment
(primary)

Service
(primary)

Service
(canary)

Pod
(v1)

Pod
(v1)

Pod
(v1)

Pod
(v2)

Pod
(v2)

Pod
(v2)

Rollout Controller

K8s Deployment
Controller

Traffic Mgmt Controller

Helm

Platform

Ingress

Topic 1: Application Definition

Topic 2: Application Deploy & Rollout

Topic 3: Workload Instance Mgmt

Topic 4: Platform

Q: What is Project X really doing?

A: Project X mainly focuses on Topic 2, i.e.
progressive app rollout. It uses Deployment
controller (Topic 3) to manage workload
instances and use Ingress (provided by K8s in
Topic 4) to split traffic during app rollout, it use
Helm (Topic 1) as app definition

Summary: the model + multi-cloud?

copyright: crossplane README

Topic 1 & Topic 1.5

App delivery pipeline

The multi-cloud control plane defines app descriptors, packaging, and sits in front of the delivery targets.

https://github.com/crossplaneio/crossplane

For more information, please check out: The Dictionary of Cloud-Native App Delivery

Join the Community:

SIG Home: https://github.com/cncf/sig-app-delivery
Mailing List: cncf-sig-app-delivery
Bi-Weekly Meeting:
● 1st and 3rd Wednesdays at 8am Pacific, 11am Eastern

- starting November 6
● Zoom: https://zoom.us/j/7276783015

https://docs.google.com/document/d/1gMhRz4vEwiHa3uD8DqFKHGTSxrVJNgkLG2WZWvi9lXo/edit#
https://github.com/cncf/sig-app-delivery
https://lists.cncf.io/g/cncf-sig-app-delivery/topics
https://zoom.us/j/7276783015

