

Han Kang, Google & Elana Hashman, Red Hat

Weighing a Cloud:
Measuring Your Kubernetes Clusters

Who are we?

Han Kang

Senior Software Engineer

● Cluster Ops Lead at Google
● SIG API-Machinery and SIG

Instrumentation Member
● Twitter: @LogicalHan
● GitHub: @logicalhan

Elana Hashman

Principal Site Reliability Engineer

● Tech Lead on Azure Red Hat
OpenShift Team

● SIG Instrumentation Member
● Twitter: @ehashdn
● GitHub: @ehashman

What we are going to cover

● How instrumentation works in Kubernetes
● Kubernetes control plane instrumentation
● Real-world debugging!
● Metric usability and SIG Instrumentation roadmap

How Kubernetes
Instrumentation Works

Prometheus

Kubernetes components integrate with Prometheus, a
time-series based monitoring and alerting toolkit.

Prometheus Data Model

Timeseries Value
up{job="kube-apiserver",instance="api-1"} 1
HELP up If the scrape target is reachable
TYPE up gauge

Types of metric values:
○ Counters
○ Gauges
○ Summaries
○ Histograms

Dimensions of Measurement

1. Availability
● up{job="kubernetes-apiservers"}

2. Latency
● apiserver_request_latency_seconds

3. Capacity
● apiserver_request_total

4. Errors
● apiserver_dropped_requests_total

Using Prometheus Metrics

Prometheus query language (PromQL) powers metrics analysis
and aggregation

● For prototyping and exploration: use the Prometheus UI
● For permanent dashboards: attach a Prometheus data

source to Grafana
● For alerting: set up the Prometheus Alert Manager
● For arbitrary queries and processing: query the

Prometheus API

Differential Diagnoses

● Lots of very different issues might manifest the same way
○ e.g. “a node is offline” -- but why?

● A single symptom is not sufficient to form a diagnosis
● Metrics can show how something is failing, but not why
● We must track down root causes with multiple data sources

Full-Stack Debugging

● Metrics can guide you to what you should look at next
● Not just metrics!

○ log files
○ audit logs
○ events
○ etcd (cluster database) dumps

● Metrics are most effective when you understand the
context in which they were produced.

Kubernetes Control Plane
Instrumentation

Control Plane

Kubelet

LIVENESS PROBE

Master Kubelet

Master
Node

1. health check
endpoint(s)

2. metrics
3. logs

Introspecting Components

Introspecting Components

$ curl localhost:10251/healthz?verbose

[+]leaderElection ok

healthz check passed

KAS (Kube-apiserver)

Kube-apiserver

● kubectl <command> -v=9
...
round_trippers.go:386] curl <some
headers>
'https://masterip/api/v1/components
tatuses?limit=500'

Kube-apiserver

● kubectl <command> -v=9
● kube-apiserver.log
● /metrics
● health endpoints

○ localhost:8080/healthz?verbose
○ localhost:8080/livez (v1.16+)
○ localhost:8080/readyz (v1.16+)

● audit-logs

Etcd

Etcd

● etcdctl
● auger
● /metrics
● /health
● etcd.log

Real-world Debugging

Kubelet Example

Problem:
Node is down

Kubelet Example

● Obvious: Prometheus scrape job is down
up{job="kube-nodes"} != 1

● Less obvious: Grey failure indicated by unusually slow
scrape time
scrape_duration_seconds{job="kube-nodes"} > 2

Kube-apiserver Example

Problem:
Crash-looping
kube-apiserver

Kube-apiserver Example

Detection Strategies:

1. Directly monitor kube-apiserver health
endpoints

2. Alerting based off master kubelets
‘metrics/probes’

Kube-apiserver Example

output of kubelet’s metrics/probes

HELP prober_probe_total Cumulative number of a liveness or readiness probe for a container by
result.
TYPE prober_probe_total counter
prober_probe_total{container="kube-apiserver",probe_type="Liveness",result="failed"} 10
prober_probe_total{container="kube-apiserver",probe_type="Liveness",result="successful"} 26457
prober_probe_total{container="kube-apiserver",probe_type="Readiness",result="failed"} 16
prober_probe_total{container="kube-apiserver",probe_type="Readiness",result="successful"} 26458

Kube-apiserver Example

Possible reasons:

a. kubelet in repair mode
b. kubelet initiated

crashloops

Kube-apiserver Example

$ curl localhost:8080/healthz?verbose

[+]ping ok
[+]log ok
[-]etcd failed: reason withheld
..... ok
[+]autoregister-completion ok
healthz check failed

kube-apiserver /healthz

Etcd Example

HELP etcd_object_counts Number of stored objects at the time of last check split by kind.
TYPE etcd_object_counts gauge
etcd_object_counts{resource="somecrd"} 1000000

Storage size limit
(https://github.com/etcd-io/etcd/blob/release-3.4/Documentation/dev-guide/limit.md)

The default storage size limit is 2GB, configurable with --quota-backend-bytes flag. 8GB is a
suggested maximum size for normal environments and etcd warns at startup if the configured value
exceeds it.

https://github.com/etcd-io/etcd/blob/release-3.4/Documentation/dev-guide/limit.md

Etcd Example

etcd_object_counts{resource=”somecrd”} 1
apiserver_request_count{resource=”somecrd”, verb=”UPDATE”} 1200

Etcd Example

(Revisited):
etcd_object_counts{resource=”somecrd.io”} 1
apiserver_request_count{resource=”somecrd.io”, verb=”UPDATE”} 1200

Object Count

S
iz

e

Versions

Etcd Example

$ kubectl get -ojson somecrd.io datum | wc -c

$ auger extract -f <dbfile> -k <key> | wc -c

Another kube-apiserver example

Problem:
API-servers are

slow.

Another kube-apiserver example

● Obvious: p99 request latency is high

histogram_quantile(
 0.99,
 sum(rate(apiserver_request_latencies_bucket[1m]))
 by (le, verb)
)

Another kube-apiserver example

Another kube-apiserver example

● Less obvious: API server metrics prior to 1.14 release
are limited to buckets between 125ms and 8s!

Another kube-apiserver example

Metric Usability &
SIG Instrumentation

Handling metric issues

● SIG Instrumentation needs to be able to fix metric bugs
and issues

● Updating metrics between releases could break
monitoring stacks

● Bad metrics can’t be disabled, requiring a full upgrade to
address

● How can we coordinate developers to address this and
responsibly communicate to end users?

Metrics Overhaul (1.14)

● Many broken metrics were identified
○ Labels did not match instrumentation guidelines,

couldn’t be joined
○ Wrong data types prevented aggregation
○ Units were not standardized

● SIG Instrumentation KEP: “Kubernetes Metrics Overhaul”
● Fixes rolled out in the 1.14 release

Metric Stability Framework

● SIG Instrumentation KEP: “Kubernetes Control Plane
Metrics Stability”

● Treat metrics as a proper API: multi-release notice
period for changes to stable metrics

● Deprecation lifecycle: slowly phase out obsolete metrics
across releases before deletion

● Enforcing Stability: metrics migration, static analysis for
stability validation, beta enforcements

Stability Metadata

var rpcDurations = metrics.NewSummary(

metrics.SummaryOpts{

Name: "rpc_durations_seconds",

Help: "RPC latency distributions.",

StabilityLevel: metrics.STABLE,

DeprecatedVersion: "1.15",

},

)

More to come!

● Stable metric criteria and promotion
● Runtime flags for disabling individual metrics
● Distributed tracing
● Structured logs
● More metric improvements!

Learn more: SIG Instrumentation Intro // Deep Dive
 Today @ 4:25pm in 6E // Tomorrow @ 3:20pm in 6D

Questions?

Image Citations

● Slide 16 : Title: LIveness Probe Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher: imgflip
● Slide 18 : Title:Count on me Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher: imgflip
● Slide 19 : Title: Only one health check Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher:

imgflip
● Slide 20 : Title: Talk to the hand Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher:

imgflip
● Slide 23 : Title: Etcd Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher: imgflip
● Slide 26 : Title: Bambi Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher: imgflip
● Slide 28: Title: Oh nos Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher: imgflip
● Slide 31 : Title: Can’t crash a crashed process Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19;

Publisher: imgflip
● Slide 32: Title: Causes other crashloops Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19;

Publisher: imgflip
● Slide 35 : Title: Datum Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher: imgflip
● Slide 37 : Title: Silly latency metric Meme; Site: Meme Generator; URL: https://imgflip.com/memegenerator; Date: 11/15/19; Publisher:

imgflip

https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator
https://imgflip.com/memegenerator

