Zero To Operator

In 2:2-seeends 90 minutes (give-or-take)

Who am I?

Solly Ross (@directxman12 / metamagical.dev)

Software Engineer on GKE and KubeBuilder Maintainer

My mission is to make writing Kubernetes extensions less arcane

https://metamagical.dev/

First of all, what's an Operator?

Okay, please pre-emptively retrive your pitehforks bikeshedding keyboards.

First of all, what's an Operator?

A controller is a loop that reads desired state ("spec"), observed cluster state
(others’ "status"), and external state, and the reconciles cluster state and external
state with the desired state, writing any observations down (to our own "status").

All of Kubernetes functions on this model.

An operator is a controller that encodes human operational knowledge: how do |
run and manage a specific piece of complex software.

All operators are controllers, but not all controllers are operators.

How's this going to work?

WEe'll learn about the concepts...
..then code the implementation...

..and try it out against an actual cluster

How's this going to work?

Scaffold & Design
Types
Behavior

Launching

Without further ado...

Without further ado...

Wait a minute, | feel like I've seen this
somewhere before!

Yeah, but we're more declarative now!

Alright, all set with the ado

Let’s talk about KubeBuilder, scaffolding, and CRD design!

What's KubeBuilder?

and how do | captialize it?

Building blocks + opinions

KubeBuilder is a set of tooling and opinions how about how to structure custom
controllers and operators, built on top of...

controller-runtime, which contains libraries for building the controller part of your
operator, and...

controller-tools, which contains tools for generating CustomResourceDefinitions,
etc for your operator

Enough talk, let's build something!

WEe'll be building an operator for a simple bespoke application: the Kubernetes
Guestbook example.

The guestbook has two components: a frontend PHP app and a Redis instance
(the backend).

We'll need to manage and deploy both for the app to work, and we'll want to expose
the frontend via a service.

Enough talk, let's build something!

You can follow along with the tutorial at pres.metamagical.dev/kubecon-us-
2019/code.

Check out the goals/ directory to see what we're aiming to produce.

https://pres.metamagical.dev/kubecon-us-2019/code
https://github.com/directxman12/kubebuilder-workshops/tree/kubecon-us-2019/goals

What do we need?

KubeBuilder, plus anuntimitted-supply-of-Xenatapes-and-hoetpoeckets Go 1.12+ (and probably git):

* See also https://kubernetes.io/docs/tutorials/stateless-application/guestbook/

https://kubernetes.io/docs/tutorials/stateless-application/guestbook/

/kubecon-project
mod 1init mykubecon
init <your-domain-here>

Go-go-gadget
KubeBuilder!

Initialize a new Go module to hold the project
Initialize a new KubeBuilder project

Generate a Deployment for running the controller
manager in Kubernetes

Configure the API Group suffix
(webapp --> webapp.metamagical.dev')

1. metamagical.dev is my own domain; please use yours here (2

Groups and Versions and Kinds, oh my!

An API group is a collection of related API types.
We call each API type a Kind.

Each API group has one or more API versions, which let us change the APl over
time

Each Kind is used in at least one Resource, which is a "use” the Kind in the API
(generally, these are one-to-one with Kinds). They're referred to in lower-case.

Each Go type corresponds to a particular Group-Version-Kind.

What is an API, but a
complicated pile of
YAML?

Spec + Status + Metadata + List

Spec holds desired state
Status holds observed states
Metadata holds name/namespace/etc

List holds many objects

<
m
>
5
>

api/vl/guestbook types.go (before modification)

Practically speaking...

create apil
webapp
GuestBook
vl

api/vl/guestbook types.go (root object & list)

Practically speaking...

The root object holds the spec, status and
metadata.

The list holds multiple root objects.

We use marker comments ? like // +marker to
indicate additional metadata about the types

On the root object, we can use markers to specify
data about how the CRD behaves in general. Here,
we specify that:

we're using the status subresource
(// +kubebuilder:subresource:status)

we want custom print columns to show up in
kubectl get output (// +kubebuider:printcolumn)

2. https://book.kubebuilder.io/reference/markers.html

https://book.kubebuilder.io/reference/markers.html

api/v1l/guestbook types.go (spec)

Practically speaking...

The spec holds some desired state.

Each field has a json tag specifying the field
name in the JSON/YAMLS.

On spec (and status), markers specify metadata
about types and fields, such as:

validation (// +kubebulder:validation :xyz)

default values for the server to apply, without
needing a webhook (// +kubebuilder:default)

whether a field is optional or required
(// +optiona1)

3. generally, it should be the same as the field name, but in camelCase
instead of PascalCase.

Practically speaking...

The status holds observed state. Status should
always be recreatable from the state of the
world. Don't store information here that you don't
care about losing.

We use the same types, structures, and markers
from the spec here.

api/vl/guestbook types.go (status)

Practically speaking...

We also need similar types for Redis.
Printcolumns left as an excercise to the reader :-)

Notice that:

we can use godoc to set APl documentation
for our types

we can separate markers from fields by
whitespace to help organize

putz around with api/v1l/redis types.go

A bit more detail on
those points...

When we implement Kubernetes APIs, there's a
couple things to keep in mind:

We allow generally allow most Go types, with a
couple exceptions:

floats aren’t allowed — use
resource.Quantity instead 4

We use tagged unions instead of interfaces

When we create optional fields, it's important to
think about whether or not we want the zero value
to be usuable. When in doubt use a pointer for
optional values

4. floats don't round trip through different systems without changing,
whereas resource.Quantity is consistent. You've probably seen
Quantities in the resource requirements section of the Pod spec, like
500m.

edit config/samples/webapp v1 guestbook.yaml

Let's try it out

First, we'll make sure our sample is all set...

Let's try it out

..then, we'll actually test it against the cluster!

Yeah, but how do | make it go?

Read, reconcile, repeat

Read our root object
Fetch other objects we care about
Ensure those objects are in the right state

Write our root object’s status

Observed Cluster State

Service Status

Desired Cluster State

Deployment Spec
Service Spec

Desired State

GuestBook Spec
Redis Spec

Reconcile

Observed State

GuestBook Status
Redis Status

our controller, in essence

S0000.... howdo I do
that?

WEe'll get a Request to reconcile, and fetch the
corresponding objects with a Client.

WEe'll set up our desired state®, marking our child
objects as owned by our root object.

We'll ask the server to apply that state correctly
with everyone else’s changes.

WEe'll return a Result saying we're all done
processing for now, or an error saying to try again
in a bit®.

5. Only what we care about, though

6. We want to ignore some errors, like not found, because trying again
won't help until the object we're trying to get actually exists.

controllers/helpers.go (desiredService and urlForService)

but what was in those
helper functions?

Basically just the Go form of Kubernetes objects,
but only what we care about!

When writing controllers, we want to be
declarative and tolerate changes by other
components.

Server-Side Apply lets us declare the structure
that we care about, and let the server take care of

merging those changes into the object ’.

We also set the owner reference, so that we keep
track of which Guestbook owns these objects.

7. In the words of Picard: "make it so!"

Now, we just need some wiring!

Controller Wiring 101

A controller is responsible for executing our logic.
We call that logic a reconciler.

Service

Each controller functions on (is for) a single Kind.

This kind may own other Kinds that it creates, or GuestBook
watch Kinds that are otherwise related.

For instance, our GuestBook controller:
is for GuestBooks

will own Services and Deployments to run and

expose the frontend PHP app. Deployment

watches Redis-es 8 to see the leader and
follower service names.

8. Redi? What's the plural of Redis anyway? 10 points to anyone who can
come for with a reasonable yet completely false linguistic explanation
for the plural of their choice.

controllers/guestbook controller.go

Wire it up...

We'll wrap the code from above in the
Reconcile function (which is part of the
Reconcile interface).

WEe'll provide a helper to set up the controller to
run as part of a manager, which is responsible for
coordinating all the controllers.

We'll need to add an index on the RedisName
fleld so that we can tell our controller how a given
Redis relates back to one or more GuestBooks in
booksUsingRedis °.

9. To do this, we'lluse r.List () withthe client.MatchingField
option, as we'll see a bit later.

...add the watch helper...

We just use our List () method to list all
GuestBook items that match the index on
redisName.

Then, we map those GuestBook instances to
reconcile Requests.

controllers/helpers.go (booksUsingRedis)

...and try it out!

Let's give it a try:

controllers/guestbook controller.go (above the reconciler)

Run as cluster admin -
who needs permissions
anyway?

Well, actually we do @

We'll use the // +kubebuilder: rbac marker
to add additional RBAC permissions to our
controller.

We've already got all thre permissions for our
types, and we'll need to add GET, LIST, and

PATCH '° for Deployments and Services.

10. as you might've noticed, PATCH is the verb we use for Server-Side Apply

My work laptop is a
viable deployment
platform, right?

WEe'll need to build an image containing our
controller manager and push it somewhere we
can use it.

Then, we'll deploy it to our cluster.

Finally, we'll wait a bit, then open the browser with
the URL from the status of our object, and we
should get a working guestbook!

export =
docker-build docker-push deploy
! ! =sugar

(k get guestbooks guestbook-sample
jsonpath=" ")

That's all folks!

KubeBuilder: book.kubebuilder.io

controller-runtime godocs: godoc.org/sigs.k8s.io/controller-runtime

This (and other) workshops: pres.metamagical.dev/kubecon-us-2019/code

These slides: pres.metamagical.dev/kubecon-us-2019

https://book.kubebuilder.io/
https://godoc.org/sigs.k8s.io/controller-runtime
https://pres.metamagical.dev/kubecon-us-2019/code
file:///home/sollyross/Documents/presentations/kubecon-na-2019/zero-to-operator/pres.metamagical.dev/kubecon-us-2019

