TINDER’S MOVE
TO KUBERNETES

Chris O'Brien - Senior Engineering Manager
Chris Thomas - Engineering Manager

Cloud Infrastructure

Why

Over two years ago, Tinder decided to move its platform
to Kubernetes. Kubernetes afforded us an opportunity to
drive Tinder Engineering toward containerization and
low-touch operation through immutable deployment.
Application build, deployment, and infrastructure would

be defined as code.

We were also looking to address challenges of scale
and stability. When scaling became critical, we often
suffered through several minutes of waiting for new EC2
instances to come online. The idea of containers
scheduling and serving traffic within seconds as

opposed to minutes was appealing to us.

How

Starting January 2018, we worked our way
through various stages of the migration effort.
We started by containerizing all of our services
and deploying them to a series of Kubernetes
hosted staging environments. Beginning in
October, we began methodically moving all of
our legacy services to Kubernetes. By March
the following year, we finalized our migration
and the Tinder Platform now runs exclusively

on Kubernetes.

Overview

Legacy Architecture
Building Images

Cl/CD

Original Architecture
Migration

Learnings

Load Balancing / Envoy
Current Architecture
Monitoring Stack

Future Architecture

Legacy
Architecture

e EC2 Auto Scaling Groups
o Fronted by ELB per-service
o Scaling off CPU usage
o Minimal tooling to automate provisioning of
new ASGs for services
e Puppet for bootstrapping node configuration
e 2 Prometheus nodes in an ASG per-service
e Code deployments pushed a new version to nfs

mount and triggered service restart

Building
Images

Microservices
More than 30 source repositories

o Node.js, Java, Scala, Go
Fully customizable build context with
standardized format (yaml)
Same build process for development and
production

Builder container

Cl/CD

CLI Tool

Code Repositories

CI/CD Repository e
or Modules

Jenkins

Build Context

Deploy
Manifest

[M1

User Interaction DSL Parse Makefile Execute r—————————— Storage

Context

(AWS S3)

|
Record DB | context files
(PostgreSQL) {y
|

l Docker Image 'I |

__________ Cl/CD Framework
build/deploy/infra

records
Deploy Context
resource | | | | | | |
states mage
m———————————— » Terraform Apply Puppet Apply Kubsmetas Repository

Apply

‘I (AWS ECR)
1
|
Y pull

N OE E E E N E N EEEEE NN NN NN N &N NN NN B NN BN ®E

Terraform
Backend
(AWS S3 &
DynamoDB)

. Others ... Management
: 4 Platforms

W E E S S S S S S N S S S B S B B BN BN BN BN BN BN BN BN BN B BN B B B N .

1
1
[
]
1
]
1
]
1
]

Environment

Original
Architecture

kube-aws for provisioning
Initially one node pool
Quickly separated into different sizes and types
Running fewer heavily threaded pods (Java) together yielded
better performance than letting them colocate with Node.js
Settled on:

o cb.4xlarge Controlplane Masters (3 nodes)

o cb.4xlarge Etcd (3 nodes)

o cb.4xlarge for Node.js

o cb.2xlarge for Java and Go

o mb.4xlarge for monitoring (Prometheus)

e Change existing service-to-service calls to new ELBs

o Peeredto K8s VPC

o Granularly migrate modules with no regard to order

o Endpoints used weighted DNS records with CNAME to
M - t. ELB
— Igra Ion e For migration, TTL was lowered and weight was adjusted to

slowly shift traffic to new K8s ELB
o Java honored low TTL but Node.js did not

o New connection pool code that would refresh the pools

every 60s

Learnings -
ARP

January 8, 2019 - unrelated scale up earlier in the day left
the cluster at a larger size than before
ARP cache exhaustion once pod and node counts
reached a certain point
Resulted in:

o Dropped packets

o Entire flannel /24s missing from ARP tables
Raised values for gc_thresh1/2/3 on all nodes

Restarted flannel on all nodes

Learnings -
DNS

DNS timeouts due to conntrack insertion failures -
SNAT / DNAT

Issues were amplified by ndots defaulting to 5 and
causing many subsequent lookups

Scaling attempts and ndots mitigations helped but
only went so far - peaked at 250k/sec and 120 cores
across 1000 CoreDNS pods

CoreDNS redeployed as DaemonSet and injected

node IP into resolv.conf - via kubelet config

° Unbalanced load across pods due to ELB connections sticking to the first
ready pods of each deployment
° Multiple temporary mitigations attempted
o MaxSurge 100%

Lo d o Inflated resource requests

- ° Internal POCs for Envoy proved successful so this gave us the chance to
Bal an c I ng leverage it in a limited fashion
T ° Envoy sidecar alongside service
e Small fleet of proxies per-service, one deployment in each AZ
° Fronted by TCP ELB
° preStop hook on sidecar
@ calls health check fail admin endpoint

o small sleep to allow inflight conns to complete and drain

CPU Usage per Container[JJllos Percentage of Request

pre-envoy service call flow envoy service call flow
YO e '7’\\ - V- ’
oY 4 28

praca : ; A~ \ / ’

[|) [|
(J A main : (A main /v :
\ users service pods \ users | service pods
| \} 0/ proxy layer 0 \‘ J proxy layer

L ;) - ‘\J‘ 3 ’

AL /“ ‘ A

Current
Architecture

~2000 nodes / 18000 cores

6 Controlplane Masters

25K - 30K Pods

115K - 130K Containers

750K samples / sec - Prometheus stack
~5 TB / day log ingestion

Migration to Envoy based Service Mesh

\J
Prometheus

—>n

Prometheus
Long Term

(&)
©
o
]
o
7
o
£
= ORI M C ORI O
olo|loloflo|olo
N O R R R
(%)
=
()
1=
e o)
g [}
=
o
o0 i<
o
©
o
]
o
7]
[}
E
o wef | o) [Se) e el || Gs) | o)
ool ol oflo| ol o
N N O G O O
%)
=
()
=
>]
L)
m
< =
o
©
o
IS4
o
7
1}
£
IS4
(=

Pod
Pod
Pod
Pod
Pod
Pod
Pod

Monitoring

Oold
Stack

namespace A namespace B

Monitorin
Stack

Prometheus-1 Prometheus-2 Prometheus-1 Prometheus-2

1 1 1 1
1 1 1 I
1 1 1 1
1 1 1 I
[Pod — 1 1 Pod — 1
1 1 1 1
1 1 1 I
. Pod — ' i Pod —]
1 1 1 1
! Pod — ! ! Pod — !
1 1 1 1
1 1 1]
\ Pod — 1 i Pod —]
1 1 1 1
! Pod — ! ! Pod — !
1 1 1 1
1 1 1 1
| Pod — 1 I Pod — |
1 1 1 1
ew A
1 1 1 1
1 1 1 1
1 1 1 I
1 1 1 1
1 1 1]
1 \ 1 1 \/ 1
1 1 1 1
1 1 1]
1 1 1 1
1 1 1 1
1 1 1 I
1 1 1 1
1 1 1 I
1 1 1 1
1 1 1 1
1 1 1 I
1 1 1 1

Thanos Thanos Thanos Thanos
L - =d - [Eee—_—— s

Prometheus

Vertical
L Autoscaler

SN
Thanos Store (Thanos Store
B S . ____4 Grafana
- Thanos . A

Querier

Amazon Route 53

Private Subnet

ELB/NLB

Private Subnet

edge proxy

—EQ=~—~{lI}~——{tIm]

Kubernetes Cluster 1

ingress services prom rollups

Kubernetes Cluster 2

— v —-{I-— I

ingress services prom rollups

AZ3

Kubernetes Cluster 3

ingress services prom rollups

— e ~—{lI—— I

Kubernetes Cluster 4

ingress services prom rollups

Amazon DynamoDB

Amazon ElastiCache

K_~7
{=)]
€N

Amazon RDS

Amazon S3

