
leigh capili

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

< Performance Art >

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

503
Service Unavailable

The Gotchas of Zero-Downtime Traffic
(with k8s!)

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

Connection
Draining

@capileigh stealthybox

SIGTERM

SIGTERM

SIGTERM

Connection
Draining

@capileigh stealthybox

Connection
Draining

@capileigh stealthybox

@capileigh stealthybox

@capileigh stealthybox

Service

Endpoints:
10.0.0.1 10.0.0.2 10.0.0.3

Node
kube-proxy, CNI,
network-policy

Node
kube-proxy, CNI,
network-policy

Ingress Controller

Pod
 ip: 10.0.0.1

Pod
 ip: 10.0.0.3

Pod
 ip: 10.0.0.2

@capileigh stealthybox

@capileigh stealthybox

kube-apiserver receives delete
Pod marked as Terminating
 + aysnc consequence:

Service controller removes Endpoint

PreStop hooks run
PID 1 of all containers receive SIGTERM
Termination Grace Period Seconds
PID 1 of all containers receive SIGKILL

@capileigh stealthybox

Pod Shutdown

@capileigh stealthybox

Gotcha #1

Pod

PID 1:
 sh -c nginx

Dockerfile:

CMD nginx
vs.
ENTRYPOINT [“nginx”]

SIGTERM

STOPSIGNAL
Shutdown Behavior

Normal shutdown behavior of kubernetes Pods and docker containers is:

1. send the process a SIGTERM

2. if the process has not exited after terminationGracePeriodSeconds, send SIGKILL

for the docker runtime, you can rewrite SIGTERM to a different signal using a

`STOPSIGNAL` layer/directive

(It’s not clear whether this directive is formally supported by CRI)

@capileigh stealthybox

Gotcha #2

Readiness / Liveness Probes

Kubernetes can’t watch your logs...
but it can watch these probes:

- Liveness used to check if Process is OK

- Readiness used to check if Pod should receive traffic

Be intentional with timeouts and periods

@capileigh stealthybox

Gotcha #3

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

Endpoints update async, independent of Pod Lifecycle.
kube-proxy and ingress-controllers depend on Endpoints.

When preStop is running or SIGTERM is sent,
your app will likely still be receiving connections.

@capileigh stealthybox

Gotcha #4

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller Terminating...

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller Terminating...
Removed
from
Endpoints

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller Terminating...
Removed
from
Endpoints

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller Shutdown.
Removed
from
Endpoints

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller Shutdown.
Removed
from
Endpoints

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

@capileigh stealthybox

Gotcha #4

Pod

Service

Endpoints

Node

Node

Ingress Controller Shutdown.
Removed
from
Endpoints

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

“Stop receiving connections”
vs.

“Start draining connections”

@capileigh stealthybox

Gotcha #4

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

Uwsgi: override the SIGTERM handler with an internal function...
https://github.com/unbit/uwsgi/issues/849#issuecomment-118869386
NGINX: need to build your own image with STOPSIGNAL SIGHUP

Was added in the upstream image and then removed
Both LB’s also need “/bin/sleep” preStop hooks

@capileigh stealthybox

Gotcha #4

https://github.com/unbit/uwsgi/issues/849#issuecomment-118869386

PreStop lifecycle hook or.... in-app integration
- Important because the definition of Graceful shutdown for most

programs is dissonant with Kubernetes’ expectations:

- In-app integration leaks platform abstractions into your code

- Perhaps need to propose a new `sleep:` lifecycle hook for

supporting “FROM scratch” images. (nothing to `exec:`)

@capileigh stealthybox

Gotcha #4

https://github.com/
stealthybox/zero-downtime

@capileigh stealthybox

https://github.com/stealthybox/zero-downtime
https://github.com/stealthybox/zero-downtime

Deployments:

.spec.strategy.rollingUpdate.maxUnavailable
Use percentage or 0 when replica count == 1

This used to default to 1 -- Fixed in apps/v1beta1:
https://github.com/kubernetes/kubernetes/pull/39683

Make sure you’re using >= apps/v1 API

@capileigh stealthybox

Gotcha #5

https://github.com/kubernetes/kubernetes/pull/39683

Deployments:
Make sure that your app can stay warm according to
these periods:

.spec.strategy.minReadySeconds
.spec.strategy.progressDeadlineSeconds

Also take care that this does not exceed capacity:
.spec.strategy.rollingUpdate.maxSurge

@capileigh stealthybox

Gotcha #6

Mismatched signal lifecycle with side-cars:
Example:

If you’re using cloudsql-proxy to connect your app
to your db, your preStop hooks and graceful shutdown
periods should be either synchronized or scheduled
so that they do not effectively race.

If your app is in graceful shutdown and the proxy is
not sleeping, it will exit and drop your db connections.

@capileigh stealthybox

Gotcha #7

1. entrypoint should handle or pass signals
2. STOPSIGNAL may need to be changed
3. Use diff. periods for Liveness/Readiness Probes
4. Sleep in preStop hooks to drain connections
5. Use the newer apps/v1 Deployment
6. Keep your app warm during a RollingUpdate
7. Synchronize shutdown of side-cars

@capileigh stealthybox

Rules of Uptime

@capileigh stealthybox

@capileigh

stealthybox

