

Chris Kim <chris.kim@rancher.com>
Miguel Ángel Ajo <majopela@redhat.com>

Solving Multi-Cluster Network
connectivity with Submariner

What is Submariner?

● Submariner is a tool that connects Kubernetes cluster networks together

● The Kubernetes Cluster Networking model provides specifications/provisions
for the physical/virtual networks contained within a cluster, but leaves it up to
the end user to determine how to connect multiple cluster networks together

● There are ways to do this specific to cloud providers, i.e. connect VPC’s
together, but this means you must be using only that providers cloud

● Submariner aims to connect the virtual networks together of multiple
Kubernetes clusters through the utilization of IPsec tunnels

History of Submariner

● Submariner was first conceptualized in 2017

● First prototypes were written in late 2018, utilizing bash scripts to
automatically establish IPsec tunnels using StrongSwan

● Submariner 0.0.1 was released in March 2019, supporting IPsec for
cross-cluster connection and local cluster host-gw routing

● Rancher and Red Hat (+ Community) have been collaborating on
Submariner to enhance/increase reliability

● Submariner 0.0.2 (current release) was released in October 2019,
supporting IPsec for cross-cluster connection and VXLAN for local
cluster routing and src-ip preservation.

Roadmap

● Subctl (more about this when talking about deployment options)

● Support for overlapping IP CIDR ranges

● DNS service discovery across clusters

● NetworkPolicy support across clusters (experimental)

● Support more network plugins: ovn-kubernetes, “GKE”, etc...

Roadmap

Roadmap (Overlapping CIDRs)

Handling clusters with Overlapping CIDRs

Handling overlapping CIDRs is being developed by the
submariner team, the implementation is based on a global

overlay CIDR which will be used for colliding clusters.

Roadmap (DNS Discovery)

submariner.io/lighthouse

Lighthouse facilitates DNS Service Discovery in
multi-cluster connected environments

The idea is that the application does not need to know
where the service lives, it accesses local and remote

services in the same manner

https://github.com/submariner-io/lighthouse

https://github.com/submariner-io/lighthouse

Roadmap (DNS Discovery)

submariner.io/lighthouse

On Premises Public Cloud

Public
Network

Pod
1

se
rv

ic
e1

2

Lighthouse
plugin

Roadmap (DNS Discovery)

submariner.io/lighthouse

On Premises Public Cloud

Pod
1 se

rv
ic

eLighthouse
CRDs

Lighthouse
plugin

plugin 3

Plugin 1

...

Public
Network

1

2

3
Lighthouse
Controller

Roadmap (Network Policies)

submariner.io/coastguard

Coast Guard facilitates NetworkPolicy functionality in
multi-cluster connected environments

Network plugins are unable to know about remote cluster pod
IPs when processing NetworkPolicy objects within a cluster.
Coastguard analyzes the network policies and provides
the IP addresses of remote cluster pods matching the

network policy.

https://github.com/submariner-io/coastguard

https://github.com/submariner-io/coastguard

Roadmap (Network policies)

submariner.io/coastguard (without coastguard running)

On Premises Public Cloud

Pod 1 IP1

canConnect

se
rv

ic
e

1

2

Pod 2 IP2

canConnect

Public
Network

NetworkPolicy:
pods with label
“canConnect”

3 4 IP2

Roadmap (Network policies)

submariner.io/coastguard

On Premises Public Cloud

Pod 1 IP1

canConnect

se
rv

ic
e

1
2

Pod 2 IP2

canConnect

Public
Network

NetworkPolicy:
pods with label
“canConnect”

3

4

IP2

NetworkPolicy:
pods with IP IP1

IP1

Coastguard
Controller

discovers

5

6
7

Roadmap (Network policies)

submariner.io/coastguard

In-depth proposal on how Network Policies could work
across clusters:

https://docs.google.com/document/d/1_QzuasJPiQ-4t8tUGODoRS2E-Q3KLJajqMyCvLPH2tY

https://docs.google.com/document/d/1_QzuasJPiQ-4t8tUGODoRS2E-Q3KLJajqMyCvLPH2tY

Deployment Options

● submariner-operator
○ Installed on the cluster manages your submariner deployment and maintenance (upgrades, status,

etc.)

● helm
○ https://github.com/submariner-io/submariner-charts
○ helm repo add submariner-latest https://submariner-io.github.io/submariner-charts/charts

● subctl (+ subm-operator)
○ cmdline interface to the operator (install, easy-configuration, status, upgrade…)

Deployment Options

https://github.com/submariner-io/submariner-charts
https://submariner-io.github.io/submariner-charts/charts

subctl

subctl Deployment

$ export KUBECONFIG=my-broker-cluster/kubeconfig

$ subctl deploy broker

* Deploying submariner-operator.
* No labeled gateway node detected, please select one:

 < list of nodes and IPs >, emphasize/suggest nodes with external IP.

* Deployed: SubmarinerBroker, Submariner...
* Created random IPSEC PSK stored in a k8s secret in the broker.
* Created submariner-xxx-yy-zz.json with signup details
* Waiting on submariner deployment to be ready: … done.

Your broker is ready, use submariner-xxx-yy-zz.json to join other clusters.

subctl

subctl Deployment

$ export KUBECONFIG=cluster-B/kubeconfig

$ subctl join submariner-xxx-yy-zz.json

* Deploying submariner-operator.
* No labeled gateway node detected, please select one:

 < list of nodes and IPs >, emphasize/suggest nodes with external IP.

* Stored Secrets with broker access credentials and IPSEC details.
* Deployed: SubmarinerBroker, Submariner...
* Created submariner-xxx-yy-zz.json with signup details
* Waiting on submariner deployment to be ready: … done.

Your cluster pods are ready to talk to other clusters.

Demo time!

Demo

 Q&A

 Thank you :-)

Time tracking:

● 2.0 min. What’s submariner?
● 1.5min. History of submariner
● 0.5min. Roadmap list

○ 0.5min Overlapping IPs
○ 1.5min. Lighthouse
○ 2.0min. Coastguard

● 2.5min deployment options
● 7.0 min Demo

Total: 18min
Available for Q&A: 30-18 = 12min

