
Scaling Kubernetes to
Thousands of Nodes Across

Multiple Clusters (calmly)

BEN HUGHES • NOV 19 • KUBECON 2019

• How we got here

• What the scaling limits are

• Scaling to multiple clusters

• How we manage our clusters

• Dealing with change

Agenda

How we
got here

Monolith

Chris Wonderly

https://commons.wikimedia.org/wiki/File:The_tall_monolith_called_Dark_Angel_stands_at_the_north_end_of_Devils_Garden._(957d4cce-e761-461f-9d09-3921c797b8e5).jpg

Monorail

Lover of Romance

https://commons.wikimedia.org/wiki/File:Series_1000_of_Tama_Intercity_Monorail.jpg

SOA

SOA Ares

Dionysus

Hades Hermes

Neptune

Zeus

Artemis

Demeter
Hera

Hestia

Athena

Vermeer

Rembran
dt

Brouwer

Steen

Rubens

Curly

Jud

Ado

Eller

Ali
Pop

Six

Uh uh
Cicero

Amsterd
am

Bern

Geneva

Gibraltar

Dublin
Monaco

Madrid

Prague

Vienna

Tallinn

Daifuku

Dango

Taiyaki

Anko

Mochi

Mochi

Scylla

Cerberus

Pegasus

Minotaur

Siren

Sphinx

Hydra

Medusa

Centaur

Chimera

Cyclops

Phoenix
Charybdi

s

Satyr Orthrus

Griffin

Gorgon

Echidna

Shogun

Daimyos

Samurai

Ronin

Bahamas

Cayman

St. Croix

JVD

Antigua

Barbuda

Nevis

Guadelou
pe

Montserr
at

St.
Vincent

Tobago

Aruba

Bonaire

Airampo

Airan

Airbrush

Airbound

Aircrew

Airdrome

Airily

Airhead
ArmchAir

cAirn
CorsAir

EclAir

FlAir

ImpAir

VoltAire

• Application code changes

• Chef changes

• Manage state in EC2

• Terraform for IAM Permissions?

- (and the even worse things before we had that)

• Alerts, Monitoring

• Databases, probably

• So many pull requests

Many Touches

OneTouch

OneTouch

And of course a lot of other configuration and tooling to
abstract and contain everything…

• One Pull Request

• One Review

• One Deploy

• to handle all app/config changes for the service

OneTouch

(Hundreds of services is probably
still too many)

• Move all existing services from Chef/EC2 to OneTouch/
Kubernetes

• Because things are migrating, need to be able to route
traffic between both configurations

• Slow start with small services

• Then all at once

- with big services

Migration

What are our K8s
scaling limits?

Nodes

0

112.5

225

337.5

450

September December March April

Growth of Prod Cluster

“We should start thinking about
multicluster”

Nodes

0

225

450

675

900

September December March April

Growth of Prod Cluster

“Uh… what’s the limit on cluster
size, again?”

Limits

• Hard limit 5000 nodes

- https://kubernetes.io/docs/setup/best-practices/cluster-large/

• You can definitely probably do 2500

- https://openai.com/blog/scaling-kubernetes-to-2500-nodes/

• “Yeah, things get a lot more difficult after 2500”

- various conversations

• (more recently) 10,000! with a lot of work (great job Alibaba!)

- https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-
components-in-a-10000-node-kubernetes-cluster_595469)

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://openai.com/blog/scaling-kubernetes-to-2500-nodes/
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469

“It would be bad if our etcd were
OOMing, right?”

“Because etcd is OOMing”

Nodes

0

450

900

1350

1800

September December March April

Growth of Prod Cluster

Nodes

0

600

1200

1800

2400

September December March April

Growth of Prod Cluster

Scaling to
multiple
clusters

• Are there any placement restrictions on workloads?

• What problem are we solving with multicluster

• A lot can be included here, and things like KubeFed try to
account for much of it

Multicluster
considerations

• Our Service Mesh (smartstack) and legacy infra meant we
had no colocation requirements

• Workloads can be randomly assigned to any cluster

• Clusters are just pools of compute and memory

• At service creation time, we choose a cluster and bind it in
the service config

We Got Lucky

Service Mesh (smartstack)

Pod A
100.64.10.3

NodePort :16234

Node: 192.168.1.12
192.168.1.12:16234

Pod B
100.64.15.201

NodePort :20987

Node: 192.168.1.18
192.168.1.18:20987

EC2 instance
192.168.1.25

Cluster A

Cluster B

Equivalent to various VPC CNIs

Pod A
192.168.5.1

Node: 192.168.1.12

192.168.5.1 Pod B
192.168.5.84

Node: 192.168.1.18

192.168.5.84

EC2 instance
192.168.1.25

• amazon-vpc-cni-k8s

- https://github.com/aws/amazon-vpc-cni-k8s

• Lyft’s cni-ipvlan-vpc-k8s

- https://github.com/lyft/cni-ipvlan-vpc-k8s

https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/lyft/cni-ipvlan-vpc-k8s

• Randomly assign workloads to clusters at creation time

• Grow clusters to a certain size (~400 nodes) before closing
off to new services

• Allows services already on the cluster to scale without
getting close to size limits

• Some special case clusters for things like test, dev, special
security groups, machine learning, etc.

Multicluster

How we manage our
clusters

• The key thing with multicluster is that you’re going to need
to make a lot of clusters

• And keep them consistent

Multi = Many
Cluster = Cluster

• Kops, kubeadm, things of that nature

• Great tools if they work for your situation

• For us, we needed to play nicely with our existing infra/
tooling

Other Solutions

What is a cluster?

• Nodes

• Machine config

• Etcd

• Control Plane config

• Cloud Provider objects (IAM roles, DNS, etc.)

• Certificates

- Genius of K8s is it reduces all problems to either PKI or
networking

• For these we generate chef and terraform code into the
appropriate repos.

What is a cluster?

• CNI

• DNS

• metrics-server

• filebeat

• RBAC

• All the cluster services that show up in tutorials as

kubectl apply -f https://raw.githubusercontent.com…

What is a cluster?
THERE’ S MORE

• Cluster services are like any other workloads we run

• Want to preserve standard development practices

• All cluster services deployed as a single unit

• Avoids missing services from cluster, also helps to avoid
version drift

• Simple metric for inclusion: Does this need to exist in every
cluster that needs it?

• Refer to this as kube-system

One Deployable Unit

• Mix of things

• Components written as helm charts, pulled in via an
“umbrella chart” per cluster, templated into a single manifest

• Various AWS configuration

• Applications deployed via kube-gen, our in house framework

• Components can fail, aim for predictability, which usually
means trying to deploy as fully as possible

• Deploys are < 10 minutes

Deploy Process

Organization

Cluster Types

Clusters

prod test-ex dev

prod-1 prod-2 test-ex-1 dev-1

• Cluster Types are like classes, Clusters are like instances

• Clusters exist for horizontal scaling

• From a workload’s perspective, it should not care nor be able
to discern which cluster of a cluster type it is running on

Clusters and
Cluster Types

• Generate chef, terraform, and kube-system

• Get those PRs approved and merged

• Launch etcd and kubernetes nodes

• Deploy kube-system

• Cluster is ready to use

• Process takes about an hour, much of which is code review

- Stopped optimizing beyond this point

Cluster Launch

Dealing with change

Making change easy means that
more change will happen

• Originally generators were basically one shot

• Some consistency was maintained by cluster-type sharing

• Changes happened much more often than expected

• And more dramatically

• Second version fully regenerates outputs from input configs
for every cluster type/cluster

What we’ve learned

• Adding a new cluster service, changing its manifest

• Upgrading Kubernetes

• Adding new IAM permissions

• Refactoring machine configuration

• Most stuff

Some things are
easy to change

• Networking

- Type of CNI plugin

- CIDRs

• Naming conventions

- “Now we format IAM roles like…”

• Certificates

- Invalid service account tokens

Other things are
really, really hard to
change

• Has fixed variables to
preserve things that can’t be
easily updated in place

• Allows for changes to be
made going forward for new
clusters

Cluster Config

kind: Cluster
name: prod-1
clusterType: prod
status:
 assignable: false
 etcdClusterState: existing
 masterInitialized: true
Should be little need to ever override these,
these are preserved to allow
configuration and fix the values independent
of future change
variables:
 clusterNameCamel: Prod1
 masterURL: https://prod-1.kubernetes.foo
 dashboardURL: https://kube-dashboard-
prod-1.foo
 masterChefRole: kubernetes-master-prod-1
 nodeCidrMaskSize: 24
 …

• Not all use cases are
supported (yet)

• Users can drop down and
modify the output directly

• Full power of chef, terraform,
or whatever

• A standard comment
prevents changes from being
overwritten

Supporting the
Unsupported # [] Check box to prevent automatic overwrites

on regenerate
Generated by kube-system (lib/kube-system/
types/output/helm_chart.rb)

or

[x] Check box to prevent automatic overwrites
on regenerate
Generators do not support per-cluster value
overrides

Ongoing process, still learning
what’s needed

• 22 Cluster Types

• 36 Clusters

• 7000+ nodes

Where we are

Thanks!

• Engineering blog at medium.com/airbnb-engineering

• Jobs at careers.airbnb.com/

https://medium.com/airbnb-engineering
https://careers.airbnb.com/

