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• How we got here 
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• Scaling to multiple clusters 

• How we manage our clusters 

• Dealing with change
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How we 
got here



Monolith

Chris Wonderly

https://commons.wikimedia.org/wiki/File:The_tall_monolith_called_Dark_Angel_stands_at_the_north_end_of_Devils_Garden._(957d4cce-e761-461f-9d09-3921c797b8e5).jpg


Monorail

Lover of Romance

https://commons.wikimedia.org/wiki/File:Series_1000_of_Tama_Intercity_Monorail.jpg
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• Application code changes 

• Chef changes 

• Manage state in EC2 

• Terraform for IAM Permissions? 

- (and the even worse things before we had that) 

• Alerts, Monitoring 

• Databases, probably 

• So many pull requests

Many Touches



OneTouch



OneTouch

And of course a lot of other configuration and tooling to 
abstract and contain everything…



• One Pull Request 

• One Review 

• One Deploy 

• to handle all app/config changes for the service

OneTouch



(Hundreds of services is probably 
still too many)



• Move all existing services from Chef/EC2 to OneTouch/
Kubernetes 

• Because things are migrating, need to be able to route 
traffic between both configurations 

• Slow start with small services 

• Then all at once 

- with big services

Migration



What are our K8s 
scaling limits?
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“We should start thinking about 
multicluster”
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“Uh… what’s the limit on cluster 
size, again?”



Limits

• Hard limit 5000 nodes 

- https://kubernetes.io/docs/setup/best-practices/cluster-large/ 

• You can definitely probably do 2500 

- https://openai.com/blog/scaling-kubernetes-to-2500-nodes/ 

• “Yeah, things get a lot more difficult after 2500”  

- various conversations 

• (more recently) 10,000! with a lot of work (great job Alibaba!) 

- https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-
components-in-a-10000-node-kubernetes-cluster_595469)

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://openai.com/blog/scaling-kubernetes-to-2500-nodes/
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469


“It would be bad if our etcd were 
OOMing, right?”



“Because etcd is OOMing”
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Scaling to 
multiple 
clusters



• Are there any placement restrictions on workloads? 

• What problem are we solving with multicluster 

• A lot can be included here, and things like KubeFed try to 
account for much of it

Multicluster 
considerations



• Our Service Mesh (smartstack) and legacy infra meant we 
had no colocation requirements 

• Workloads can be randomly assigned to any cluster 

• Clusters are just pools of compute and memory 

• At service creation time, we choose a cluster and bind it in 
the service config

We Got Lucky



Service Mesh (smartstack)

Pod A 
100.64.10.3

NodePort :16234

Node: 192.168.1.12
192.168.1.12:16234

Pod B 
100.64.15.201

NodePort :20987

Node: 192.168.1.18
192.168.1.18:20987

EC2 instance 
192.168.1.25

Cluster A

Cluster B



Equivalent to various VPC CNIs

Pod A 
192.168.5.1

Node: 192.168.1.12

192.168.5.1 Pod B 
192.168.5.84

Node: 192.168.1.18

192.168.5.84

EC2 instance 
192.168.1.25

• amazon-vpc-cni-k8s 

- https://github.com/aws/amazon-vpc-cni-k8s 

• Lyft’s cni-ipvlan-vpc-k8s 

- https://github.com/lyft/cni-ipvlan-vpc-k8s

https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/lyft/cni-ipvlan-vpc-k8s


• Randomly assign workloads to clusters at creation time 

• Grow clusters to a certain size (~400 nodes) before closing 
off to new services 

• Allows services already on the cluster to scale without 
getting close to size limits 

• Some special case clusters for things like test, dev, special 
security groups, machine learning, etc.

Multicluster



How we manage our 
clusters



• The key thing with multicluster is that you’re going to need 
to make a lot of clusters 

• And keep them consistent

Multi = Many 
Cluster = Cluster



• Kops, kubeadm, things of that nature 

• Great tools if they work for your situation 

• For us, we needed to play nicely with our existing  infra/
tooling

Other Solutions



What is a cluster?



• Nodes 

• Machine config 

• Etcd 

• Control Plane config 

• Cloud Provider objects (IAM roles, DNS, etc.) 

• Certificates 

- Genius of K8s is it reduces all problems to either PKI or 
networking 

• For these we generate chef and terraform code into the 
appropriate repos.

What is a cluster?



• CNI 

• DNS 

• metrics-server 

• filebeat 

• RBAC 

• All the cluster services that show up in tutorials as 
 
kubectl apply -f https://raw.githubusercontent.com…

What is a cluster?
THERE’ S MORE



• Cluster services are like any other workloads we run 

• Want to preserve standard development practices 

• All cluster services deployed as a single unit 

• Avoids missing services from cluster, also helps to avoid 
version drift 

• Simple metric for inclusion: Does this need to exist in every 
cluster that needs it? 

• Refer to this as kube-system

One Deployable Unit



• Mix of things 

• Components written as helm charts, pulled in via an 
“umbrella chart” per cluster, templated into a single manifest 

• Various AWS configuration 

• Applications deployed via kube-gen, our in house framework 

• Components can fail, aim for predictability, which usually 
means trying to deploy as fully as possible 

• Deploys are < 10 minutes

Deploy Process



Organization

Cluster Types

Clusters

prod test-ex dev

prod-1 prod-2 test-ex-1 dev-1



• Cluster Types are like classes, Clusters are like instances 

• Clusters exist for horizontal scaling 

• From a workload’s perspective, it should not care nor be able 
to discern which cluster of a cluster type it is running on

Clusters and 
Cluster Types



• Generate chef, terraform, and kube-system 

• Get those PRs approved and merged 

• Launch etcd and kubernetes nodes 

• Deploy kube-system 

• Cluster is ready to use 

• Process takes about an hour, much of which is code review 

- Stopped optimizing beyond this point

Cluster Launch



Dealing with change



Making change easy means that 
more change will happen



• Originally generators were basically one shot 

• Some consistency was maintained by cluster-type sharing 

• Changes happened much more often than expected 

• And more dramatically 

• Second version fully regenerates outputs from input configs 
for every cluster type/cluster

What we’ve learned



• Adding a new cluster service, changing its manifest 

• Upgrading Kubernetes 

• Adding new IAM permissions 

• Refactoring machine configuration 

• Most stuff

Some things are 
easy to change



• Networking 

- Type of CNI plugin 

- CIDRs 

• Naming conventions 

- “Now we format IAM roles like…” 

• Certificates 

- Invalid service account tokens

Other things are 
really, really hard to 
change



• Has fixed variables to 
preserve things that can’t be 
easily updated in place 

• Allows for changes to be 
made going forward for new 
clusters

Cluster Config

kind: Cluster 
name: prod-1 
clusterType: prod 
status: 
  assignable: false 
  etcdClusterState: existing 
  masterInitialized: true 
# Should be little need to ever override these, 
these are preserved to allow 
# configuration and fix the values independent 
of future change 
variables: 
  clusterNameCamel: Prod1 
  masterURL: https://prod-1.kubernetes.foo 
  dashboardURL: https://kube-dashboard-
prod-1.foo 
  masterChefRole: kubernetes-master-prod-1 
  nodeCidrMaskSize: 24 
  … 



• Not all use cases are 
supported (yet) 

• Users can drop down and 
modify the output directly 

• Full power of chef, terraform, 
or whatever 

• A standard comment 
prevents changes from being 
overwritten

Supporting the 
Unsupported # [ ] Check box to prevent automatic overwrites 

on regenerate 
# Generated by kube-system (lib/kube-system/
types/output/helm_chart.rb) 

or 

# [x] Check box to prevent automatic overwrites 
on regenerate 
# Generators do not support per-cluster value 
overrides 



Ongoing process, still learning 
what’s needed



• 22 Cluster Types 

• 36 Clusters 

• 7000+ nodes

Where we are



Thanks!

• Engineering blog at medium.com/airbnb-engineering 

• Jobs at careers.airbnb.com/

https://medium.com/airbnb-engineering
https://careers.airbnb.com/

