
Russian Doll
Extending Containers with Nested Processes
Christie Wilson and Jason Hall (Google)

OH NOES!!1! :(

Jason Hall Christie Wilson

Who We Are

Super powerful or
terrible hack?
You decide!

Overview

1. Tekton 101
2. But how?
3. Early attempts
4. Magic sauce
5. Demo!
6. Future work

Tekton 101

Tekton 101

● Specification for CI/CD building
blocks
○ Tasks, Pipelines, Pipeline Resources
○ e.g., Pull Request, container image,

deployment target
● Maximum pluggability 🧩
● "Kubernetes-style" API, and a

Kubernetes implementation
○ Builds on K8s primitives, provides

higher-level abstractions

Tekton 101: Tasks

● Tasks are workflow templates
○ Defined once, invoked over and over
○ Parameterizable

● Tasks are comprised of
containerized steps

● Steps run sequentially*

● Example: git clone, go vet, golint, go
build ./..., go test ./…

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
 name: golang-build
spec:
 steps:
 - name: build
 image: golang:1.13
 command: ['go', 'build', './...']

Tekton 101: Tasks

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
 name: buildpacks
spec:
 steps:
 - name: prepare
 image: alpine
 command: ["/bin/sh"]
 args: …

 - name: detect
 image: builder-image
 command: ["/lifecycle/detector"]
 args: …

continued... ->

 - name: analyze
 image: builder-image
 command: ["/lifecycle/analyzer"]
 args: …

 - name: build
 image: builder-image
 command: ["/lifecycle/builder"]
 args: …

 - name: export
 image: builder-image
 command: ["/lifecycle/exporter"]
 args: …

 - name: cache
 image: builder-image
 command: ["/lifecycle/cacher"]
 args: …

Tekton 101: Tasks

Tekton 101: Tasks

● How does a Task execute on Kubernetes?
○ We use Pods!

● Lots of things in Kubernetes are just wrappers for Pods
○ Deployments, Jobs, DaemonSets, ReplicaSets, etc.
○ ...they just create Pods that are labeled or scheduled differently

● Tekton uses Pods to run containerized steps
○ ...but Pods run containers all-at-once 🤔

Overview

1. Tekton 101
2. But how?
3. Early attempts
4. Magic sauce
5. Demo!
6. Future work

But how?

 Requirements 1. Run multiple containers
2. Run them in order
3. Let them share data easily

Tasks

Sharing Data
1. Naturally matches to a Pod
2. Node affinity

a. Same node, not same disk
b. Need to share via Volumes

3. Custom scheduler
a. Still need Volumes

4. Jobs?
Many Containers

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

Kubernetes Jobs

Pros Cons

"Run-to-completion" Pods

Specified containers still run
all-at-once…

Can specify a deadline

Can specify retry behavior

Jobs retry Pod creation if it fails

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

Pods

Overview

1. Tekton 101
2. But how?
3. Early attempts
4. Magic sauce
5. Demo!
6. Future work

initContainers

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

initContainers

● Pods let you specify initContainers:
○ “Initialize” the pod
○ Run before the Pod's containers, sequentially!
○ A failing initContainer fails the Pod before running containers

● ...but what about Sidecars?

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

https://github.com/kubernetes/enhancements/issues/753

Sidecars

● Can't run anything alongside init containers
● We'd like to be able to run some containers

alongside the steps
○ Integration testing
○ HTTP Proxy
○ Docker-in-Docker sidecar

● Sidecar containers should be up before
steps start

https://github.com/kubernetes/enhancements/issues/753

If not
initContainers,
then what?

Overview

1. Tekton 101
2. But how?
3. Early attempts
4. Terrible hacks!
5. Demo!
6. Future work

Terrible Hacks!
Magic Sauce!

Container Entrypoint

● Container specifies what to run when it starts
● Entrypoint can be specified by the container image (ENTRYPOINT)
● ...or explicity when describing the container (.containers[*].command)

DOCKERFILE Task Step

Entrypoint Overload

1. Override the user's specified entrypoint
with one we control

2. Pass original command+args to our binary
3. Binary waits for some signal to start, then

runs the user's command+args
4. When it's done, signals the next step, and

so on

Placing the Entrypoint Binary

● Run an initContainer containing the
binary
○ Copy it into /builder/tools Volume, shared

with all step containers
● Override each step's command to point to

the entrypoint binary
● Pass original command+args to our binary
● Entrypoint binary is statically-linked Go

binary, no dependencies

Sidecar Support

1. Controller watches the Pod
2. Annotates the Pod with "READY" when

sidecars are running
3. Downward API Volume makes file available

when Pod is annotated
○ Downward API exposes Pod metadata

to containers, as files
4. Signals step 0 to start

https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/

https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/

https://github.com/kubernetes/enhancements/issues/753

KEP 753
KEP 753 to officially support
Sidecars

○ Start Pod containers only after
sidecars are up

○ Shut down sidecars when main Job
containers finish

Sidecars

https://github.com/kubernetes/enhancements/issues/753

Caveats
● Containers still start all-at-once

○ Don't get clear data when each step starts
○ Can't easily build an image in step 1 and

use it in step 3
● Need to lookup the entrypoint if the

step doesn't specify command
○ Might need credentials to read container

image config

Here be dragons! 🐉

Overview

1. Tekton 101
2. But how?
3. Early attempts
4. Magic Sauce
5. Demo!
6. Future work

Demo!

We wrote the terrible
hacks so you don’t
have to!

outer-top
middle-top inner-top

} Wait for sidecar via
Downward API

} Signal the next step

What the user actually
wanted to run}

Magic sauce binary}

} First Step

Entrypoint
retrieved from
container registry!

Step 1 Pod

} First Step

Step 2 Pod

} Second Step

} Wait for step 1

} Signal the next step

https://gfycat.com/AnchoredInfatuatedGrassspider

https://gfycat.com/AnchoredInfatuatedGrassspider

Overview

1. Tekton 101
2. But how?
3. Early attempts
4. Magic Sauce
5. Demo!
6. Future work

Future Work

Future Work
Step Start Time

Future Work
Super Sidecar

● Signal entrypoint binaries to start,
from within the Pod

● "Self-driving" Pod, doesn't require
input from the Controller

Future Work
Debug mode

● Tell entrypoint binary to keep running
● kubectl exec to look around and

debug the step

Thanks! ❤

● Shoutouts to some of many folks who contributed to this:
○ Matt Moore (init containers)
○ James Strachan (“just wrap the binary!”)
○ All the Prow folks (same approach)
○ Aaron Prindle (move away from init containers)
○ Alex DiCarlo (sidecar support)
○ Scott Seaward (logs)
○ Dan Lorenc (debug mode)

Closing

● See the code: github.com/tektoncd/pipeline
● Example Tasks: github.com/tektoncd/catalog
● Become a Friend: github.com/tektoncd/friends
● Ask questions on the Slack: bit.ly/2QrSksh

https://github.com/tektoncd/pipeline
https://github.com/tektoncd/catalog
https://github.com/tektoncd/friends
https://bit.ly/2QrSksh

