
Running Apache Samza on
Kubernetes

Jian HeWeiqing Yang

11/19/2019

Agenda
Introduction About Apache Samza

Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes

Comparison Kubernetes for Other Big Data Processing Engines

Q & A

About Apache Samza

Samza is a distributed stream processing framework that allows you to build
stateful applications that process data at scale in real-time.

A distributed stream processing framework
developed at LinkedIn in 2013

Users: LinkedIn, Intuit, Slack, TripAdvisor,
Optimizely, Redfin, VMWare ...

10 major releases and 26 committers since
Dec. 2014

Samza I/OsDB

Changes

Deployment K-V stores

brooklin

Rest services
Standalone

Samza I/OsDB

Changes

Deployment K-V stores

brooklin

Rest services
Standalone

Typical Use Cases of Samza

Samza
Application

Services

DB Changes

Metrics

Queries & Updates

Lookups

Analytics

Kafka or other
messaging systems

Event Producer Result Publishing
and Serving

Streaming
application(s)

Applications

Datastore

Rest Services

Espresso, Couchbase, MySql, etc

...

Samza Features

Flexible API
Write Once

Run Anywhere Massive Scale Fault Tolerance

• API to write stream
processing jobs in
SQL, Java, Python.

• Flexible deployment
options to run
anywhere - from
public clouds to
containerized
environments to bare-
metal hardware

• Battle-tested on
applications that use
several terabytes of
state and run on
thousands of cores.

• Transparently migrate
associated state in the
event of failures.

• At-Least-Once
processing semantics

Samza Concept Overview

Samza
Application

Kafka streams
with messages

Samza application
that only filters
certain kind of

messages here blue

Kafka streams
with filtered

messages

Samza processes streams. A stream is composed of immutable messages of a similar type or
category. In Kafka a stream is a topic.

Advanced Concept Overview

Input Stream A

Input Stream C

Input Stream B

Samza Container

Task 1

Task 2

Samza Container..N

Samza Container..1

Samza Job

Partition 0

Partitio
n 0

Partition 1

Partition 1

Partition: each stream is broken into one or more partitions, which is an ordered, replayable
sequence of records. Task: the unit of parallelism of the job, just as the partition is to the
stream.

Advanced Concept Overview

Input Stream A

Input Stream B

Pa
rti

tio
n 0

Partition 1

Job Coordinator:
• manage the assignment of tasks across the individual containers
• monitor the liveness of individual containers
• redistribute the tasks among the remaining ones during a failure

Task 1

Heartbeat
Container 0

Task 0

Container 2

Partition 0

Partition 1 Job
Coordinator

Advanced Concept Overview

Input Stream A

Input Stream B

Pa
rti

tio
n 0

Partition 1

Job Coordinator:
• manage the assignment of tasks across the individual containers
• monitor the liveness of individual containers
• redistribute the tasks among the remaining ones during a failure

Task 1

Heartbeat
Container 0

Task 0

Container 2

Partition 0

Partition 1 Job
Coordinator

Samza & Kubernetes: Working Together

Streaming Engine

01 Large-scale distributed stream
processing

02

03

Scalable and durable local state

Fault-tolerance and fast recovery

Container-Orchestration System

01

02

03

Container orchestration

Remote or local persistent volume

Health checks & operators

Agenda
Introduction About Apache Samza

Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes

Comparison Kubernetes for Other Big Data Processing Engines

Q & A

Kubernetes Recap

Workflow

User

Kafka

1. Publish configs

API-Server

2. CLI submit a Samza App

Kubelet
Job

Coordinator
4. Launch

Kubelet

5. Request worker3. Found
app submitted

6. Found worker requested

Worker

8. Get assignment

Store

7. Download jars

run-app.sh/
Application-
Runner

Overview - Samza on Kubernetes

P2 P3 P3

1

2

3

P2

Node – Zoom In

Kubelet

Docker

Health check

Worker Container
Write
state

Node

Remote

Local

Azure
Remote

Store

Write
state

Stream1
P0

Stream2
P0

Task-0

Agenda
Introduction About Apache Samza

Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes

Comparison Kubernetes for Other Big Data Processing Engines

Q & A

Demo

Run “wikipedia-application” job on Azure Kubernetes cluster (AKS):

• Samza version: 1.3 (latest master-branch code)
• Docker image: weiqingyang/hello-samza-new:v0
• Task: consumes the real-time feeds from Wikipedia, extracts the metadata of the events, and

calculates statistics of all edits in a 10-second window. The application code can be found here:
https://tinyurl.com/t8gy87h
o Merge wikipedia, wiktionary, and wikinews events into one stream
o Parse each event to a more structured format
o Aggregate some stats over a 10s window
o Format each window output for public consumption
o Send the window output to the wikipedia-stats Kafka topic. The messages in the stats topic look like this:

{"edits":1,"editsAllTime":0,"bytesAdded":445,"uniqueTitles":1,"counts":{}}
{"edits":2,"editsAllTime":0,"bytesAdded":1,"uniqueTitles":2,"counts":{"is-minor":1}}
{"edits":2,"editsAllTime":0,"bytesAdded":-301,"uniqueTitles":2,"counts":{}}
…

https://github.com/weiqingy/samza-hello-samza/blob/samzaOnK8s/src/main/java/samza/examples/wikipedia/application/WikipediaApplication.java
https://tinyurl.com/t8gy87h

Agenda
Introduction About Apache Samza

Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes

Comparison Kubernetes for Other Data Processing Engines

Q & A

Samza Standalone

- Samza StreamProcessor is statically placed on hosts

- ZooKeeper for membership management and task coordination

n

StreamProcessor
Samza

Container Coordinator

StreamProcessor

Samza
Container Coordinator

StreamProcessor
Samza

Container Coordinator

User launches StreamProcessor
on multiple hosts

…
Zookeeper

Samza on YARN

Samza leverages YARN for scheduling, resource-management, and deployment.

RM RM

YARN processes
(RM/NM)

Samza Containers

NM NM NM

NM NM NM

HA

submit

Yarn Cluster
RM(Resource Manager) == API-Server + Scheduler
NM(Node Managers) == Kubelet
AM(Application Master). == Controller

User

Samza on YARN

1. Client Submits to ResourceManager
2. ResourceManager talks to NodeManager to launch Samza

ApplicationMaster
3. Samza ApplicationMaster asks N container and launch on Samza

Task on NodeManagers
4. SamzaTasks then reads partition streams from Broker

* Picture from Apache Samza document

Kubernetes vs Apache Yarn

Kubernetes - Good for long running service
- Level triggered design principal: Driving current state towards

desired state
- Self - healing: Ideal for automated daily operations

YARN - Big data ecosystems: Spark, Flink, Samza, Mapreduce
- Good for batch Jobs
- First-class ‘Job’ concept, e.g. Job priority. Job scheduling.

Compared with pod in Kubernetes

Agenda
Introduction About Apache Samza

Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes

Comparison Kubernetes for Other Data Processing Engines

Q & A

Kubernetes for Spark

* Picture from Apache Spark website

- Similar to Samza on Kubernetes
- Spark driver == Samza job coordinator
- Spark executor == Samza worker
- Client submits a Spark Driver pod
- Scheduler watches the pod and assigns a

node
- The node launches the driver pod.
- The driver pod creates N pods to run

executors

Spark Operator on Kubernetes

* Picture from Spark operator website

Spark Operator

Spark Operator - Spark Application Definition

Spec

Status

* Pictures from Spark operator website

Kubernetes for Flink
- Flink - another popular streaming processing engine
- Flink is composed of JobManager (Samza Job Coordinator) and TaskManager (Samza Worker)
- Use K8s Deployment primitive to launch JobManager and N replicated TaskManagers
- Pro: leverage existing robust K8s workload primitive, minimal code changes
- Cons: not as flexible as Samza or Spark approach, e.g. Run a pod on a specific node

JobManager Deployment for 1 replica TaskManager Deployment for 2 replicas

* Pictures from Apache Flink website

Thank you !

