KubeCon | CloudNativeCon
North America 2019

Running Apache Samza on
Kubernetes

Weiging Yang Jian He

11/19/2019

Introduction About Apache Samza

Age ﬂ d a Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes
Comparison Kubernetes for Other Big Data Processing Engines

Q&A

About Apache Samza

(N Samza is a distributed stream processing framework that allows you to build
@” stateful applications that process data at scale in real-time.

Users: LinkedIn, Intuit, Slack, TripAdvisor,
Optimizely, Redfin, VMWare ...

v

A distributed stream processing framework
developed at Linkedln in 2013

10 major releases and 26 committers since
Dec. 2014

Samza I/Os %g
Changes e
=
b N
brooklin Azure Event Hub
o~

=

Azure Event Hub

\

Amazon Kinesis

¢
Q /)

y
m»
-wr

elasticsearch

=)

Couchbase

|

Deployment K-V stores

"ha - Rest services
% %HN = Standalone

kubernetes

S
i

Services

Typical Use Cases of Samza

DB Changes

/

Metrics

—

Event Producer

Kafka or other
messaging systems

Samza

Application

Streaming
application(s)

Espresso, Couchbase, MySql, etc

Datastore

JO0
|

Rest Services

Result Publishing
and Serving

Queries & Updates

Lookups

Analytics

Applications

Samza Features

® API to write stream ® Flexible deployment ® Battle-tested on ® Transparently migrate
processing jobs in options to run applications that use associated state in the
SQL, Java, Python. anywhere - from several terabytes of event of failures.
public clouds to state and run on ® At-Least-Once
containerized thousands of cores. processing semantics

environments to bare-
metal hardware

Samza Concept Overview

Samza processes streams. A stream is composed of immutable messages of a similar type or
category. In Kafka a stream is a topic.

(LI
? Y =D — LI
i J

Kafka streams Samza application Kafka streams
with messages that only filters with filtered
certain kind of messages

messages here blue

Advanced Concept Overview

Partition: each stream is broken into one or more partitions, which is an ordered, replayable
sequence of records. Task: the unit of parallelism of the job, just as the partition is to the

stream.

Samza Job

Input Stream A
P [Samza Container..N \

(I~

8
7, /f/OO
J

0
Input Stream B Qa(‘\&\o \

_)

(

Samza Container..1 \

Task 1 <—>8

Task 2 ‘—’8

v

Input Stream C

—l

Advanced Concept Overview

Job Coordinator:
* manage the assignment of tasks across the individual containers
* monitor the liveness of individual containers
* redistribute the tasks among the remaining ones during a failure

Input Stream A Container 0
} Partition O Heartbeat
|:||:||:||:| 2 Task 0
%
J T,
2
v Job
Q Coordinator
Input Stream B »'00{\ Container 2
,§°

_ e

Samza & Kubernetes: Working Together

Streaming Engine Container-Orchestration System
© samza
kubernetes
(01 Large-scale distributed stream (01 Container orchestration
processing
()2 Scalable and durable local state (02 Remote or local persistent volume

03 Fault-tolerance and fast recovery ()3 Health checks & operators

Introduction About Apache Samza
Age ﬂ d a Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes
Comparison Kubernetes for Other Big Data Processing Engines

Q&A

Kubernetes Recap

Controller Scheduler

Master l l

APl-server

4 ! 4

4 N/ N\ 4 NN /7 N/~ N\
(Pod)| Pod) (Pod)|(Pod) (Pod)|(Pod)

Node

Kubelet Kubelet Kubelet

Workflow

2. CLI submit a Samza App 6. Found worker requested

run-app.sh/
Application- E— API-Server e Kubelet
Runner
7. Download jars
1. Publish configs

3. Found 5. Request worker

app submitted

(Get assignment

4. Launch
Kubelet 3 Coordinator

Kafka

Kubernetes

Overview - Samza on Kubernetes

ob
ra - - 2 . ’) é I ;
; ! 3
s : an
;' Worker
. 2
a : .
Stream1 “Stream?2 -

Kafka

PO‘T P1B]

2

P;‘ | ij.

ok

3

Node - Zoom In
Node
----------- Health check
Kubelet
/ Write
J Worker Container / state T ——
Docker / S Write

Stream1 Stream?2
PO PO

e
Remote o

Introduction About Apache Samza

Age n d a Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes
Comparison Kubernetes for Other Big Data Processing Engines

Q&A

Demo

Run “wikipedia-application” job on Azure Kubernetes cluster (AKS):

® Samza version: 1.3 (latest master-branch code)
® Docker image: weigingyang/hello-samza-new:v0

® Task: consumes the real-time feeds from Wikipedia, extracts the metadata of the events, and

calculates statistics of all edits in a 10-second window. The application code can be found here:
https://tinyurl.com/t8qy87h
o Merge wikipedia, wiktionary, and wikinews events into one stream

Parse each event to a more structured format

Aggregate some stats over a 10s window

Format each window output for public consumption

Send the window output to the wikipedia-stats Kafka topic. The messages in the stats topic look like this:

O O O O

{"edits":1,"editsAllTime":0,"bytesAdded":445,"uniqueTitles":1,"counts":{}}
{"edits":2,"editsAllTime":0,"bytesAdded":1,"uniqueTitles":2,"counts":{"is-minor":1}}
{"edits":2,"editsAllTime":0,"bytesAdded":-301,"uniqueTitles":2,"counts":{}}

https://github.com/weiqingy/samza-hello-samza/blob/samzaOnK8s/src/main/java/samza/examples/wikipedia/application/WikipediaApplication.java
https://tinyurl.com/t8gy87h

Introduction About Apache Samza
Age ﬂ d a Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes
Comparison Kubernetes for Other Data Processing Engines

Q&A

Samza Standalone

- Samza StreamProcessor is statically placed on hosts

- ZooKeeper for membership management and task coordination

StreamProcessor
User la u.nches StreamProcessor / Ciigizr?er oot
on multiple hosts
StreamProcessor
—) Samza < Zookeeper
. Coordinator
Container
StreamProcessor
e
Samza

Container Coordinator

Samza leverages YARN for scheduling, resource-management, and deployment.

Yarn Cluster

RM(Resource Manager)
NM(Node Managers)

Samza on YARN

API-Server + Scheduler

== Kubelet
AM(Application Master). ==

Controller

submit

J
J
J

an
an
an

%()(

an
an
DD

an
an
an

i

an
an
an

\(

@ YARN processes

an
an
an

i

an
an
an

() Samza Containers

Samza
YARN
Client

RM

— —

NM NM
v v
Samza
Samza Task
AM
Runner

— 1

Kafka
Broker

Kafka
Broker

* Picture from Apache Samza document

Samza on YARN

Client Submits to ResourceManager

ResourceManager talks to NodeManager to launch Samza
ApplicationMaster

Samza ApplicationMaster asks N container and launch on Samza
Task on NodeManagers

SamzaTasks then reads partition streams from Broker

Kubernetes vs Apache Yarn

Kubernetes Good for long running service

Level triggered design principal: Driving current state towards
desired state

Self - healing: Ideal for automated daily operations

YARN - Big data ecosystems: Spark, Flink, Samza, Mapreduce
- Good for batch Jobs
- First-class ‘Job’ concept, e.g. Job priority. Job scheduling.
Compared with pod in Kubernetes

Introduction About Apache Samza
Age ﬂ d a Deep Dive Executing Samza Jobs on Kubernetes

Demo Demo

Deployment Standalone, Yarn, Kubernetes
Comparison Kubernetes for Other Data Processing Engines

Q&A

apiserver

scheduler

Client

* Picture from Apache Spark website

Kubernetes for Spark

kubernetes cluster

Similar to Samza on Kubernetes
Spark driver == Samza job coordinator
Spark executor == Samza worker
Client submits a Spark Driver pod

Scheduler watches the pod and assigns a
node

The node launches the driver pod.

The driver pod creates N pods to run
executors

Spark Operator on Kubernetes

—_—
—_—
-~
—~~
~

Application
ku beCtl/ SparkApplication/ N .
Sparkctl ScheduledSparkApplication ’ apiserver
Spark OperaV

Controllers

i spark-pi.yaml
‘\ Submission
Runner

Spark Pod
Monitor

Mutating

Admission Executor Pod o
Webhook xecutor Pod

* Picture from Spark operator website

Spark Operator - Spark Application Definition

E—
Spec
apiVersion: sparkoperator.k8s.io/vlbeta2
kind: SparkApplication
metadata:
spec:
A Status
dEjE!EE' e N5 At e e e
coreLimit: 1200m status:
cores: 1 sparkApplicationId: spark-5f4ba921c85ff3flcb@4bef32419154c9
labels: - dars applicationState:
version: 2.3.
memory: 512m state: COMPLETED
serviceAccount: spark completionTime: 2018-02-20T23:33:55Z
—— driverInfo:
ole o o podName: spark-pi-83ba921c85ff3flcb@4bef324f9154c9-driver
-starees—1
el webUTIAddress: 35.192.234.248:31064
version: 2.3.0 webUIPort: 31064
memory: 512m y webUIServiceName: spark-pi-2402118027-ui-svc
mainApplicationFile: local:///opt/spark/examples/jars/spark-examples_2.11-2.3.0.] WEbUIIngreSSName' Spark_pl_u%_%ngress
mainClass: org.apache.spark.examples.SparkPi webUIIngressAddress: spark-pi.ingress.cluster.com
mode: chm?er executorState:
LA e spark-pi-83ba921c85ff3flcb@4bef324f9154c9-exec-1: COMPLETED

zzﬁ:ilgizzztgzs: 3 LastSubmissionAttemptTime: 2018-02-20T23:32:27Z
onFailureRetryInterval: 10

onSubmissionFailureRetries: 5

onSubmissionFailureRetryInterval: 20

RsiEscaa * Pictures from Spark operator website

Kubernetes for Flink

- Flink - another popular streaming processing engine

- Flink is composed of JobManager (Samza Job Coordinator) and TaskManager (Samza Worker)
- Use K8s Deployment primitive to launch JobManager and N replicated TaskManagers

- Pro: leverage existing robust K8s workload primitive, minimal code changes

- Cons: not as flexible as Samza or Spark approach, e.g. Run a pod on a specific node

apiVersion: extensions/vlbetal apiVersion: extensions/vlbetal

kind: Deployment kind: Deployment
metadata: metadata:
name: flink-jobmanager name: flink-taskmanager
spec: Spec:
replicas: 1 replicas: 2
template: template:
metadata: metadata:
labels: labels:
app: flink app: flink
component: jobmanager component: taskmanager
spec: Spec:
containers: containers:
- name: jobmanager - name: taskmanager
image: flink:latest image: flink:latest
workingDir: /opt/flink workingDir: /opt/flink
command: [*/bin/bash", "-c", "$FLINK_HOME/bin/jobmanager.sh start;\ command: ["/bin/bash", "-c", "$FLINK_HOME/bin/taskmanager.sh start; \
JobManager Deployment for 1 replica TaskManager Deployment for 2 replicas

* Pictures from Apache Flink website

Thankyou !

