

Jacob Anders, CSIRO
Feng Pan, Red Hat

RDMA Enabled Kubernetes for
High Performance Computing

What is HPC and why is it important?

● High-performance computing (HPC) refers to systems that, through a
combination of processing capability and storage capacity, can rapidly
solve difficult computational problems

● Access to state-of-the-art HPC facilities key to success in key areas of
research, such as medicine, engineering, geoscience, chemistry,
defence technologies, weather modeling and more

What is HPC and why is it important?

● Highly competitive field, with strong government support and
investment in US, China, Europe, Australia, Singapore and other
countries competing for regional and/or global leadership

 (data source - http://top500.org)

http://top500.org

How can Kubernetes help HPC?

● HPC community developed a wide range of optimised hardware and
software (job schedulers, communication libraries, parallel file systems)

● However, among HPC users there is a growing requirement for tools
and capabilities that don’t fully fit in traditional boundaries of HPC.
This includes:

○ interactive and persistent workloads
○ network isolation
○ custom application stacks (“can I run my own docker container”)

● These capabilities are often requested by researchers working in
emerging and strategically important areas of science such as
biomedical research, cyber security and machine learning

How can Kubernetes help HPC?

Advantages that Kubernetes can bring to the HPC community:

● portability and reproducibility, ease of automation
● proven scalability, wide adoption, well-tested code base
● agility - from code in git to production in minutes
● large user base and active community

Advantages that HPC community can bring to Kubernetes:

● HPC has scale and performance requirements rarely seen elsewhere
● Challenges solved for HPC often benefit other areas (e.g. NFV)
● Perfecting general-purpose tools and frameworks benefits wider

community.

Networking in Cloud Computing

Key considerations are security and adaptability:

● Strong focus on on multi-tenancy and security
● Dynamic - Software-defined-networking (SDN) a de-facto standard
● Generic to ensure portability of workloads
● Latency and bandwidth can vary
● “noisy neighbour” scenario is not uncommon

Performance is important, but in most cases is secondary to the above

Networking in HPC

High and consistent performance is king...

● Low latency
● High bandwidth
● Minimising jitter (performance fluctuation)
● advanced topologies maximising bisection bandwidth
● often utilising specialised hardware and offloads
● typically quite static
● limited multi-tenancy - data access typically managed with filesystem

permissions

… other requirements are considered secondary

Networking in HPC - RDMA

● Remote Direct Memory Access (RDMA)
● Advance transport protocol (same layer as TCP and UDP)
● Main features

○ Remote memory read/write semantics in addition to send/receive
○ Kernel bypass / direct user space access
○ Transport fully offloaded to the NIC HW
○ Secure, channel based IO

● Application advantage
○ Low latency
○ High bandwidth
○ Low CPU consumption

● RoCE: RDMA over Converged Ethernet
○ Available for all Ethernet speeds 10 – 200G

● Verbs: RDMA SW API (Similar to sockets)

Implementation
● Multus
● SR-IOV Device Plugin with RDMA support
● SR-IOV CNI
● Kubernetes CPU Manager
● Kubernetes Topology Manager

Kubernetes Networking

● Every pod is assigned its own IP address
● A pod can communicate with all other pods without NAT
● A node can communicate with all pods on all nodes without NAT

Cluster Network

Pod

eth0

Pod

eth0

Pod

eth0

Multus
● Meta CNI Plugin enabling pods to connect to multiple networks
● Network Plumbing Working Group standard CRD spec

Pod
eth0 net0

SR-IOV

Kubernetes

CNI “meta plugin” ()

Default CNI SR-IOV CNI

Default

default SR-IOV

CRDs

Cluster
Network

Pod
eth0

Pod
eth0

Pod
eth0

RDMA
Network

net0

net0

Enabling SR-IOV and RDMA
● SR-IOV Device Plugin

○ Manages and advertises SR-IOV nics
to Kubernetes

○ Configure RDMA
○ Communicates NUMA information with

Kubelet
● SR-IOV CNI

○ Plugs SR-IOV VF into a pod
○ Supports both Kernel and DPDK modes
○ Manages IPAM

Pod

eth0 net0
SR-IOV

Kubernetes

CNI “meta plugin” ()

Default CNI SR-IOV CNI

Default CNI

default,
SR-IOV

CRDs

SR-IOV Device
Plug-in

SR-IOV NIC

CPU Manager and Topology Manager
● CPU Manager

○ Static Policy
○ Allocate dedicated CPUs to container
○ Node level config

● Topology Manager
○ Alpha feature in 1.16
○ Coordinate CPU and Device resource on node level
○ NUMA Alignment

RDMA Workload Pod Spec
apiVersion: v1

kind: Pod

metadata:

 name: rdma-pod-1

 annotations:

 k8s.v1.cni.cncf.io/networks: rdma-network

spec:

(...)

 resources:

 requests:

 mellanox.com/mlnx_sriov_rdma: '1'

 hugepages-1Gi: 4Gi

 cpu: '6'

 memory: 100Mi

 limits:

 mellanox.com/mlnx_sriov_rdma: '1'

 hugepages-1Gi: 4Gi

 cpu: '6'

Lab setup

Performance benchmarks were run on two servers with:
● Kubernetes 1.16.2,
● CentOS 7.7,
● Kernel 3.10.0-1062.4.1.el7.x86_64,
● Intel Xeon Gold 6136 CPU @ 3.00GHz,
● Mellanox ConnectX5 VPI cards,
● Mellanox SX6036 VPI switch (40Gbit/s Ethernet and 56Gbit/s

InfiniBand),

Kubernetes setup

● kubeadm base install with flannel networking, plus
○ multus-cni
○ sriov-cni
○ sriov-network-device-plugin

● post-install configuration:
○ enabling hugepages
○ enabling SRIOV
○ creating kubernetes resources

■ configmap
■ daemonset
■ network

ConfigMap specifies the details of
SRIOV capable NIC
apiVersion: v1

kind: ConfigMap

metadata:

 name: sriovdp-config

 namespace: kube-system

data:

 config.json: |

 {

 "resourceList": [{

 "resourceName": "mlnx_sriov_rdma",

 "isRdma": true,

 "selectors": {

 "vendors": ["15b3"],

 "devices": ["1018"],

 "pfNames": ["p4p1"]

 }

(...)

K8s-RDMA performance benchmark
[root@kube02 ~]# kubectl create -f yaml/pod1.yaml
pod/pod1.yaml created
[root@kube02 ~]# kubectl create -f yaml/pod2.yaml
pod/pod2.yaml created
[root@kube02 ~]# kubectl create -f yaml/pod3.yaml
pod/pod3.yaml created

[root@kube02 ~]# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
testpod1 1/1 Running 0 5d4h 10.244.1.16 kube01
testpod2 1/1 Running 0 5d4h 10.244.0.25 kube02
testpod3 1/1 Running 0 5d4h 10.244.1.17 kube01

K8s-RDMA performance benchmark
[root@kube01 ~]# docker exec -it 2f23bd37c78d ib_send_bw -d mlx5_4 -i 1 -x 0

* Waiting for client to connect... *

[root@kube02 ~]# docker exec -it c1bab072f584 ib_send_bw -F -d mlx5_6 -i 1 10.244.1.16 -x 0

 Send BW Test
 Dual-port : OFF Device : mlx5_6
 Number of qps : 1 Transport type : IB
 Connection type : RC Using SRQ : OFF
(...)

 local address: LID 0000 QPN 0x06ad PSN 0x93a32c
 GID: 254:128:00:00:00:00:00:00:76:108:46:255:254:55:185:117
 remote address: LID 0000 QPN 0x02af PSN 0xf66cdf
 GID: 254:128:00:00:00:00:00:00:40:128:192:255:254:20:95:137

 #bytes #iterations BW peak[MB/sec] BW average[MB/sec] MsgRate[Mpps]
 65536 1000 4362.56 4362.49 0.069800

[root@kube02 ~]#

K8s-RDMA vs bare-metal
(Kubernetes)
[root@kube02 ~]# docker exec -it c1bab072f584 ib_send_bw -F -d mlx5_6 -i 1 10.244.1.16 -x 0

 Send BW Test
 Dual-port : OFF Device : mlx5_6
 Number of qps : 1 Transport type : IB
 Connection type : RC Using SRQ : OFF
(...)

 #bytes #iterations BW peak[MB/sec] BW average[MB/sec] MsgRate[Mpps]
 65536 1000 4362.56 4362.49 0.069800

(bare-metal)
[root@kube02 ~]# ib_send_bw -F 172.16.3.1 -x 0

 Send BW Test
 Dual-port : OFF Device : mlx5_0
 Number of qps : 1 Transport type : IB
 Connection type : RC Using SRQ : OFF

 #bytes #iterations BW peak[MB/sec] BW average[MB/sec] MsgRate[Mpps]
 65536 1000 4363.24 4363.17 0.069811

Conclusions

● SRIOV-based RDMA support in K8s works well
● Performance is very good and closely matches bare-metal
● It enables running applications requiring ultra-fast networking in K8s

containers

Future Work

● InfiniBand support
● Integration with high-performance storage
● Support for GPUDirect

References

● Multus
● SR-IOV CNI
● SR-IOV Device Plugin
● Kubernetes CPU Manager
● Kubernetes Topology Manager

https://github.com/intel/multus-cni
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-network-device-plugin
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/

Thank you

Questions?

