Polymorphic Reconcilers in Kubernetes

snichols@vmware.com mattmoor@vmware.com
@n3wscott (v, ¥.E) @mattomata (w)

@mattmoor (¥,EB)

Background

Custom Resource Definitions (aka CRDs) are leading to an explosive expansion of
the Kubernetes type system. Previously to reason about compute resources, you
could juggle a handful of concepts.

(K%

Background (cont'd)

However, with CRDs allowing folks to build their own higher-level compute
abstractions, this list is and will continue to grow.

Function

0 As a controller author, how do I keep up with this expanding set?

Option A) Bake it in!

package eventing

import (
"github.com/knative/serving/..."
"github.com/wesley/hutchinson/..."
"github.com/colonel/mustard/..."
"github.com/scarlet/speedster/..."
"github.com/and/on/..."
"github.com/and/on-forever/..."
"github.com/please/no-more/..."
"github.com/why/would/you/do/this/..."
"github.com/omg/stop-it/..."

snichols@vmware.com

@n3wscott (v, $,H)

vaikas@vmware.com
@vaikas (¥, H)
@AikasVille ()

mattmoor@vmware.com
@mattomata (w)

@mattmoor (¥,EB)

Barcelona:

We gave a talk in Barcelona, which we'd g
S e s |

57757018068~
anbassadort - T7b649BBAE

encourage folks to watch for
background. This talk is going to try to
largely cover new content and demos.

... S0 you don't all fall asleep!

o do :

« ok about dynamic type controllen

. WWWW@

Quick recap of Kubernetes duck typing

"foo": { "aaa": ". . ."’ "CCC": ". . ."’ —
"bar" . nw ... nw n fooll : { n fooll : {
}, "bar": n ... n "bar": n ... n L Partial Schema
"bbb 1A . 1A .. 1A } } ,
} } raaat s v]

apiVersion: apps/vl
kind: Deployment

apiVersion: apps/vl

Kubernetes’ happy accident: the apps “duck type”

kind: DaemonSet

apiVersion: apps/vl
kind: StatefulSet

metadata: metadata: metadata:
name: nginx-deployment name: fluentd—elasticsearch‘__ﬂ____ﬂ———'”"" name: web
labels: | labels: spec:
app: nginx k8s-app: fluentd-logging selector:
spec: spec: matchLabels:
selector: selector: app: nginx
matchLabels: matchLabels: serviceName: "nginx"
app: nginx name: fluentd-elasticsearch replicas: 3
replicas: 3 template: template:
template: metadata: metadata:
metadata: labels: labels:
labels: name: fluentd-elasticsearch app: nginx
app: nginx spec: spec:
spec: ‘///’ containers: containers:
containers: - name: fluentd-elasticsearch - name: nginx
- name: nginx image: fluentd:v2.5.1 image: nginx:0.8
image: nginx:1.7.9
ports:
- containerPort: 80

All the app resources share this partial schema, and we can read from
and write to this as shown previously.

Problem Statement

There are many instances where users want to late-“bind” things into their
applications:

e Secrets / ConfigMaps
e Sidecars

Let's take a look at a simple binding that illustrates a proposed direction for Knative
event sources...

(K%

“SinkBinding”

apiVersion: bindings.mattmoor.dev/vlalphal
kind: SinkBinding
metadata:
name: foo-bar
spec:
target:
The K8s resource(s) that want to send
events somewhere.

sink:

The “somewhere” (K8s resource) to
send the events.

(K%

How do we inject the “sink” into all of these?

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
selector:
matchLabels:
app: nginx
replicas: 3

apiVersion:

apps/vl

kind: DaemonSet

metadata:

name: fluentd-elasticsearch

labels:
k8s-app:
spec:
selector:

fluentd-logging

matchLabels:
name: fluentd-elasticsearch

template:

template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx

image: nginx:1.7.
ports:
- containerPort:

9

80

metadata:

labels:

name:
spec:

/

image:

fluentd-elasticsearch

containers:
- name: fluentd-elasticsearch

fluentd:v2.5.1

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: web
spec:
selector:
matchLabels:
app: nginx
serviceName: "nginx"
replicas: 3

template:
metadata:
labels:
app: nginx

spec:
containers:
- name: nginx
image: nginx:0.8

... and how do we extract the “sink” from all the possible destinations?

Option A) Bake it in!

package eventing

import (
"github.com/knative/serving/..."
"github.com/wesley/hutchinson/..."
"github.com/colonel/mustard/..."
"github.com/scarlet/speedster/..."
"github.com/and/on/..."
"github.com/and/on-forever/..."
"github.com/please/no-more/..."
"github.com/why/would/you/do/this/..."
"github.com/omg/stop-it/..."

Option B) Ducks!

apiVersion: bindings.mattmoor.dev/vlalphal
kind: SinkBinding
metadata:
name: foo-bar
spec:
target:
apiVersion: apps/vl
kind: Deployment
name: bar

Anything with a PodSpec (aka “PodSpec”-able)

sink:
apiVersion: serving.knative.dev/vl
kind: Service Our “Addressable” duck type.

name: foo

(K%

Controller Architecture

SB

apiVersion: bindings.mattmoor.dev/vlalphal
kind: SinkBinding
metadata:
name: foo-bar
spec:

target:

apiVersion: apps/v1l We register a mutating webhook for these types so that they

are not committed to etcd without their binding injected.

kind: Deployment (This is critical for immutable resources, e.g. Job)

name: bar
sink:

apiVersion: serving.knative.dev/vl

kind: Service

name: foo

(K%

Controller Architecture (cont'd)

apiVersion: bindings.mattmoor.dev/vlalphal
kind: SinkBinding
metadata:
name: foo-bar
spec:
target:
apiVersion: apps/vl
kind: Deployment
name: bar
sink:

: : : : We run a controller over SinkBinding that
apiVersion: serving.knative.dev/vl
P J / tracks referenced “sinks” so that if the sink
address changes the new address can be

patched into the binding target.

SB

kind: Service
name: foo

(K%

Foo

kind: Foo

kind: Boo
name: boo

kind: Bar
name: bar

kind: Baz
name: baz

\J

kind: Boo kind: Bar kind: Baz
name: boo name: bar name: baz

\J

kind: Boo kind: Bar kind: Baz
name: boo name: bar name: baz

ConfigMap
Z{t [Boo, Bar, Baz]

Boo

kind: Boo
name: boo

kind: Bar
name: bar

Bar

kind: Baz
name: baz

apiVersion: apiextensions.k8s.io/vlbetal
kind: CustomResourceDefinition
metadata:
labels:
duck.knative.dev/addressable: "true"
name: services.serving.knative.dev
spec:
group: serving.knative.dev
names:
categories:
- all
- knative
- serving
kind: Service
listKind: Servicelist
plural: services
shortNames:
- kservice
- ksvc
singular: service
scope: Namespaced
subresources:
status: {}
version: vlalphal
versions:

- [name: vlalphal, served: true, storage:
- [name: vlbetal, served: true, storage:
- [name: vl, served: true, storage: false]

apiVersion: apiextensions.k8s.io/vlbetal
kind: CustomResourceDefinition
metadata:
labels:
duck.knative.dev/addressable: "true"
name: brokers.eventing.knative.dev
spec:
group: eventing.knative.dev
names:
categories:
- all
- knative
- eventing
kind: Broker
listKind: BrokerList
plural: brokers
singular: broker
scope: Namespaced
subresources:
status: {}
version: vlalphal
versions:

- [name: vlalphal, served: true, storage:

true]

kind: CustomResourceDefinition

<k, addressable: "true"

Boo Bar

kind: Boo kind: Bar kind: Baz
name: boo name: bar name: baz

Knative Context

Service.serving.knative.dev
- A containerized service that can scale way up, down to zero.

Broker.eventing.knative.dev
- A stream of events inside of a named mesh.

Trigger.eventing.knative.dev
- An active query on a stream of events inside of a Broker.

(K%

Ducktypes in play

Service.serving.knative.dev
- Addressable

Broker.eventing.knative.dev
- Addressable

Trigger.eventing.knative.dev
- None*

(K%

kind: Broker
name: default

kind: Deployment

O00——01

name: source

kind: Trigger I]kind: Service

name: all-events name: sink

SinkBinding

kind: Broker
Name: default

kind: Deploymgnt

C

Name: source

)

kind: Trigger]k nd: Service

\\\\\\\\fame: all-events Ndme: sink

Addressable

kind: Broker
name: default

kind: Deployment

O00——01

name: source

kind: Trigger I]kind: Service

name: all-events name: sink

23
kind: Broker Triggerable (g)
name: default '
kind: Deployment[:I 0 ' ' ' '
name: source kind: Trigger kind: Service
name: foo-events hname: sink
spec: labels:
filter: foo trigger: foo

_/

to do (as welt) -

TODO: Wall of links

