
Polymorphic Reconcilers in Kubernetes
snichols@vmware.com
@n3wscott (, ,)

mattmoor@vmware.com
@mattomata ()
@mattmoor (,)

Background

Custom Resource Definitions (aka CRDs) are leading to an explosive expansion of
the Kubernetes type system. Previously to reason about compute resources, you
could juggle a handful of concepts.

Deployment DaemonSet Job StatefulSet

Background (cont’d)

However, with CRDs allowing folks to build their own higher-level compute
abstractions, this list is and will continue to grow.

Deployment DaemonSet Job StatefulSet

Service Configuration Function ...

As a controller author, how do I keep up with this expanding set?

Option A) Bake it in!
package eventing

import (

)

 "github.com/knative/serving/..."
 "github.com/wesley/hutchinson/..."
 "github.com/colonel/mustard/..."
 "github.com/scarlet/speedster/..."
 "github.com/and/on/..."
 "github.com/and/on-forever/..."
 "github.com/please/no-more/..."
 "github.com/why/would/you/do/this/..."
 "github.com/omg/stop-it/..."

Polymorphic Reconcilers in Kubernetes
mattmoor@vmware.com
@mattomata ()
@mattmoor (,)

Option B)

untitled duck presentation

snichols@vmware.com
@n3wscott (, ,)

vaikas@vmware.com
@vaikas (,)
@AikasVille ()

��

Barcelona: www.youtube.com/watch?v=Mb8c5SP-Sw0

We gave a talk in Barcelona, which we’d
encourage folks to watch for
background. This talk is going to try to
largely cover new content and demos.

… so you don’t all fall asleep!

● quick recap of kubernetes duck typing
● talk about bindings
● demo binding
● talk about dynamic type controllers
● demo dynamic type controller

to do :

Quick recap of Kubernetes duck typing

{
 "foo": {
 "bar": "..."
 },
 "bbb": "..."
}

{
 "aaa": "...",
 "foo": {
 "bar": "..."
 }
}

{
 "ccc": "...",
 "foo": {
 "bar": "..."
 },
 "ddd": "..."
}

Partial Schema

Kubernetes’ happy accident: the apps “duck type”
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: fluentd-elasticsearch
 labels:
 k8s-app: fluentd-logging
spec:
 selector:
 matchLabels:
 name: fluentd-elasticsearch
 template:
 metadata:
 labels:
 name: fluentd-elasticsearch
 spec:
 containers:
 - name: fluentd-elasticsearch
 image: fluentd:v2.5.1

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: web
spec:
 selector:
 matchLabels:
 app: nginx
 serviceName: "nginx"
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:0.8

All the app resources share this partial schema, and we can read from
and write to this as shown previously.

● quick recap of kubernetes duck typing
● talk about bindings
● demo binding
● talk about dynamic type controllers
● demo dynamic type controller

to do :

Problem Statement

There are many instances where users want to late-“bind” things into their
applications:

● Secrets / ConfigMaps
● Sidecars

Let’s take a look at a simple binding that illustrates a proposed direction for Knative
event sources...

“SinkBinding”

apiVersion: bindings.mattmoor.dev/v1alpha1
kind: SinkBinding
metadata:
 name: foo-bar
spec:
 target:
 # The K8s resource(s) that want to send
 # events somewhere.

 sink:
 # The “somewhere” (K8s resource) to
 # send the events.

How do we inject the “sink” into all of these?
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: fluentd-elasticsearch
 labels:
 k8s-app: fluentd-logging
spec:
 selector:
 matchLabels:
 name: fluentd-elasticsearch
 template:
 metadata:
 labels:
 name: fluentd-elasticsearch
 spec:
 containers:
 - name: fluentd-elasticsearch
 image: fluentd:v2.5.1

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: web
spec:
 selector:
 matchLabels:
 app: nginx
 serviceName: "nginx"
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:0.8

… and how do we extract the “sink” from all the possible destinations?

Option A) Bake it in!
package eventing

import (

)

 "github.com/knative/serving/..."
 "github.com/wesley/hutchinson/..."
 "github.com/colonel/mustard/..."
 "github.com/scarlet/speedster/..."
 "github.com/and/on/..."
 "github.com/and/on-forever/..."
 "github.com/please/no-more/..."
 "github.com/why/would/you/do/this/..."
 "github.com/omg/stop-it/..."

Option B) Ducks!

apiVersion: bindings.mattmoor.dev/v1alpha1
kind: SinkBinding
metadata:
 name: foo-bar
spec:
 target:
 apiVersion: apps/v1
 kind: Deployment
 name: bar
 sink:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: foo

Anything with a PodSpec (aka “PodSpec”-able)

Our “Addressable” duck type.

Controller Architecture

apiVersion: bindings.mattmoor.dev/v1alpha1
kind: SinkBinding
metadata:
 name: foo-bar
spec:
 target:
 apiVersion: apps/v1
 kind: Deployment
 name: bar
 sink:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: foo

We register a mutating webhook for these types so that they
are not committed to etcd without their binding injected.
(This is critical for immutable resources, e.g. Job)

��🏾 ♀
SB

Controller Architecture (cont’d)

apiVersion: bindings.mattmoor.dev/v1alpha1
kind: SinkBinding
metadata:
 name: foo-bar
spec:
 target:
 apiVersion: apps/v1
 kind: Deployment
 name: bar
 sink:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: foo

We run a controller over SinkBinding that
tracks referenced “sinks” so that if the sink
address changes the new address can be
patched into the binding target.

�� 🌾
SB

● quick recap of kubernetes duck typing
● talk about bindings
● demo binding
● talk about dynamic type controllers
● demo dynamic type controller

to do :

● quick recap of kubernetes duck typing
● talk about bindings
● demo binding
● talk about dynamic type controllers
● demo dynamic type controller

to do :

kind: Foo
spec:
 ref: [boo, bar, baz]

kind: Boo
name: boo

kind: Bar
name: bar

kind: Baz
name: baz

���� 🌾
Foo

kind: Boo
name: boo

kind: Bar
name: bar

kind: Baz
name: baz

��🏽 🎤
🦆

kind: Boo
name: boo

kind: Bar
name: bar

kind: Baz
name: baz

��🏽 🎤
🦆

kind: Boo
name: boo

kind: Bar
name: bar

kind: Baz
name: baz

��🏽 🎤
Boo

��🏽 🎤
Bar

��🏽 🎤
Baz

ConfigMap
 🦆: [Boo, Bar, Baz]

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 labels:
 duck.knative.dev/addressable: "true"
 name: services.serving.knative.dev
spec:
 group: serving.knative.dev
 names:
 categories:
 - all
 - knative
 - serving
 kind: Service
 listKind: ServiceList
 plural: services
 shortNames:
 - kservice
 - ksvc
 singular: service
 scope: Namespaced
 subresources:
 status: {}
 version: v1alpha1
 versions:
 - [name: v1alpha1, served: true, storage: true]
 - [name: v1beta1, served: true, storage: false]
 - [name: v1, served: true, storage: false]

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 labels:
 duck.knative.dev/addressable: "true"
 name: brokers.eventing.knative.dev
spec:
 group: eventing.knative.dev
 names:
 categories:
 - all
 - knative
 - eventing
 kind: Broker
 listKind: BrokerList
 plural: brokers
 singular: broker
 scope: Namespaced
 subresources:
 status: {}
 version: v1alpha1
 versions:
 - [name: v1alpha1, served: true, storage: true]

kind: Boo
name: boo

kind: Bar
name: bar

kind: Baz
name: baz

��🏽 🎤
Boo

��🏽 🎤
Bar

��🏽 🎤
Baz

kind: CustomResourceDefinition
metadata:
 labels:
 duck/addressable: "true"
...�� 🌾

crd

● quick recap of kubernetes duck typing
● talk about bindings
● demo binding
● talk about dynamic type controllers
● demo dynamic type controller

to do :

Knative Context

Service.serving.knative.dev
 - A containerized service that can scale way up, down to zero.

Broker.eventing.knative.dev
 - A stream of events inside of a named mesh.

Trigger.eventing.knative.dev
 - An active query on a stream of events inside of a Broker.

Ducktypes in play

Service.serving.knative.dev
 - Addressable

Broker.eventing.knative.dev
 - Addressable

Trigger.eventing.knative.dev
 - None*

kind: Deployment
name: source

kind: Broker
name: default

kind: Trigger
name: all-events

kind: Service
name: sink

kind: Deployment
Name: source

kind: Broker
Name: default

kind: Trigger
Name: all-events

kind: Service
Name: sink

SinkBinding

Addressable

kind: Deployment
name: source

kind: Broker
name: default

kind: Trigger
name: all-events

kind: Service
name: sink

kind: Deployment
name: source

kind: Broker
name: default

kind: Trigger
name: foo-events
spec:
 filter: foo

kind: Service
name: sink
labels:
 trigger: foo

Triggerable(🦆)
�� 🌾

🦆

● quick recap of kubernetes duck typing
● talk about bindings
● demo binding
● talk about dynamic type controllers
● demo dynamic type controller

to do :

to do (as well) :

● ?????????????????
● ?????????????????
● ?????????????????
● ?????????????????
● ?????????????????

to do (as well) :

● visualizing duck-typed relationships
● ?????????????????
● ?????????????????
● ?????????????????
● ?????????????????

TODO: Wall of links

