




OpenTelemetry: The First Release, 
What’s Next, and How to Get 
Involved



Presenters

Sergey Kanzhelev
SWE at Microsoft

@SergeyKanzhelev

Tristan Sloughter
SWE at Postmates

@tsloughter

Chris Kleinknecht
SWE at Google

@c24t

Morgan McLean
PM at Google

@mtwo

https://github.com/SergeyKanzhelev
https://github.com/tsloughter
https://github.com/c24t
https://github.com/mtwo


OpenTelemetry

OpenTelemetry makes robust, portable telemetry a built-in 
feature of cloud-native software.



OpenTelemetry

API Integrations Libraries Exporters Collector



Contributors



Contributors



How Things Work: Membership
OpenTelemetry is free, vendor neutral set of libraries that anybody can use.

We value and welcome contributions!

Three levels of engagement thru contributions:
- Member
- Approver
- Maintainer

Project contains of multiple special interest groups.

Members Approvers Maintainers



How Things Work: Project Vision
“If you want to go fast, go alone, if you want to go far, go together”

There is a structure in place to ensure that we all building the same project:

● Project members are building the project
● Elected governance committee defines and uphold the project vision
● Technical committee shape the vision into the specifications

Governance 
committee

Technical 
committee

Members

defin
e

elect

participateguide

establish



Telemetry in Action



Telemetry in Action



Telemetry in Action



Telemetry in Action



Telemetry in Action

OpenTelemetry enables you to:

● Instrument application and library code
● Propagate context between services
● Export telemetry data to APM backends



Telemetry in Action
Instrument application and library code

● Generate spans and metrics
● Only depend on API package, 

low overhead by default
● May get "for free" via libraries 

or auto-instrumentation



Telemetry in Action
Instrument application and library code



Telemetry in Action

Incoming
● Deserialize request metadata
● Inject into application context

Outgoing
● Serialize some application 

context
● Attach as request metadata

E.g. w3c/trace-context

Propagate context between services

https://github.com/w3c/trace-context


Telemetry in Action
Propagate context between services



Telemetry in Action
Export telemetry data to APM backends

● APM vendors maintain 
exporters

● May export to multiple 
backends at once

● Export to agent/collector to 
swap other exporters out at run 
time



Telemetry in Action
Export telemetry data to APM backends



Architecture



Architecture



OpenTelemetry Personas

OpenTelemetry is designed for multiple users, each with different use cases 
and goals

● Application developers
● Library owners
● APM vendors



Persona: Application Owner

● Application code is 
instrumented with OT API 
package

● Load a specific version of the 
SDK, which may vary by 
deployment

End-users/developers/operators of applications that need instrumentation 
(Postmates, Walmart, etc.)



Persona: Application Owner

● Application code is 
instrumented with OT API 
package

● Load a specific version of the 
SDK, which may vary by 
deployment

End-users/developers/operators of applications that need instrumentation 
(Postmates, Walmart, etc.)



Persona: Application Owner

● Application code is 
instrumented with OT API 
package

● Load a specific version of the 
SDK, which may vary by 
deployment

End-users/developers/operators of applications that need instrumentation 
(Postmates, Walmart, etc.)



Persona: Application Owner

● Application code is 
instrumented with OT API 
package

● Load a specific version of the 
SDK, which may vary by 
deployment

End-users/developers/operators of applications that need instrumentation 
(Postmates, Walmart, etc.)



Persona: Library Owner

● Value performance, ease of 
maintenance

● Should depend on API package 
only

● Libraries instrumented with 
OpenTracing or OpenCensus 
will continue to work with 
OpenTelemetry

Library owners/maintainers who want to maintain integrations (MongoDB, 
JDBC, etc.)



Persona: APM Vendor

● May need advanced features 
specific to their APM service

● Write custom exporters to send 
telemetry data to their agent or 
service

● May extend the SDK, e.g to act 
on span start and end events

● May ship their own SDKs to 
replace those that ship with 
client libraries

Telemetry vendors who need to build exporters and understand where the 
market is going (Dynatrace, New Relic, Datadog, etc.)



Persona: APM Vendor

● May need advanced features 
specific to their APM service

● Write custom exporters to send 
telemetry data to their agent or 
service

● May extend the SDK, e.g to act 
on span start and end events

● May ship their own SDKs to 
replace those that ship with 
client libraries

Telemetry vendors who need to build exporters and understand where the 
market is going (Dynatrace, New Relic, Datadog, etc.)



Persona: APM Vendor

● May need advanced features 
specific to their APM service

● Write custom exporters to send 
telemetry data to their agent or 
service

● May extend the SDK, e.g to act 
on span start and end events

● May ship their own SDKs to 
replace those that ship with 
client libraries

Telemetry vendors who need to build exporters and understand where the 
market is going (Dynatrace, New Relic, Datadog, etc.)



Persona: APM Vendor

● May need advanced features 
specific to their APM service

● Write custom exporters to send 
telemetry data to their agent or 
service

● May extend the SDK, e.g to act 
on span start and end events

● May ship their own SDKs to 
replace those that ship with 
client libraries

Telemetry vendors who need to build exporters and understand where the 
market is going (Dynatrace, New Relic, Datadog, etc.)



OpenTelemetry Components



OpenTelemetry Components

OpenTelemetry includes:

● Client libraries in multiple languages
● Specification, data format, and semantic conventions
● Integrations for other libraries/frameworks/etc.
● Exporters for APMs
● A standalone collector



Component: Client Libraries

Clients in multiple languages that generate telemetry data

E.g. opentelemetry-python

● Tracing
● Metrics
● Logs (someday)
● Separate API and SDK packages
● Other utilities

○ Context propagation, both in- and intra-process
○ Resource detection

https://github.com/open-telemetry/opentelemetry-python


Component: Specification

The specification describes how client libraries should behave, which 
components belong to API and SDK packages in each language

opentelemetry-specification

● Includes a data format for exporters and agent/collector protocol
● Includes semantic conventions for field names

https://github.com/open-telemetry/opentelemetry-specification


Component: Exporters

Exporters format and ship telemetry data to specific APM backends

E.g. opentelemetry-ext-jaeger

● Exporter interface included in the SDK package
● SDK also includes utilities for exporters: batching, retrying, etc.
● Configured application-wide: switch APMs, switch exporters without 

changing application code

https://github.com/open-telemetry/opentelemetry-python/tree/master/ext/opentelemetry-ext-jaeger


Component: Integrations

Multiple kinds of integrations and extensions:

● Framework (web/service)
○ Deserialize request metadata, inject into application context
○ Generally creates a span, metrics for each handled request

● Protocol/transport
○ E.g. W3C-HTTP, gRPC
○ Text and binary format options
○ Framework integrations may use protocol integrations

● Other libraries, especially databases
○ Integrations only depend on API package
○ E.g. opentelemetry-ext-pymongo

https://github.com/open-telemetry/opentelemetry-python/tree/master/ext/opentelemetry-ext-pymongo


Component: Collector

Standalone agent or service that provides smart trace sampling, metrics 
aggregation, and other advanced features

opentelemetry-collector

● App exports to OT agent, which exports to other APM backends
● Single binary with two deployment options:

○ "Agent" sidecar that runs on same host/pod as app
○ "Collector" standalone application that runs independently

https://github.com/open-telemetry/opentelemetry-collector


What should you do next?



If you are already involved

● Keep it up!
● Help others get involved
● Tell your friends and coworkers!
● Join a SIG, if you haven’t already

https://opentelemetry.io/get-involved/#special-interest-groups


To start using OpenTelemetry
● Head over the docs https://opentelemetry.io/docs/
● Choose your language and checkout the Quick Start
● If no Quick Start exists yet, see the individual repos on Github

https://opentelemetry.io/docs/
https://github.com/open-telemetry


Already using OpenTracing/Census?

● Take a look at the OpenTelemetry 
implementations for the languages 
you are using

● Try them out and send feedback
● Try the OpenTelemetry collector for 

collecting OpenTracing data
● Look at the available OT/OC shims

https://github.com/open-telemetry/opentelemetry-collector


Want to start contributing?

● https://opentelemetry.io/get-involved/
● Find the OpenTelemetry repo you’d like to contribute to
● Fork it!
● Look for “good first issues” in the Issue tracker and update the issue to 

note that you are working on it
● Or just find something interesting to you or missing that you need

https://opentelemetry.io/get-involved/


Your org wants to give support

● Meet us after the presentation
● Introduce yourself on gitter 

open-telemetry/community

https://gitter.im/open-telemetry/community


W3C Trace Context
“Standards form the fundamental building blocks for product development by 
establishing consistent protocols that can be universally understood and 
adopted.”

OpenTelemetry makes telemetry a built-in feature of cloud-native software:
- best practices
- great libraries
- standards

Join W3C Distributed Tracing WG: https://github.com/w3c/distributed-tracing-wg 

https://github.com/w3c/distributed-tracing-wg


Non-code Participation
There are many ways to participate including many 
non-code contributions:

● Share your story via blogs and events
● Help to reach out to more people
● Plan and triage work
● Do reviews, file issues and share feedback

Join our community!



Tell us how you use OpenTelemetry
OpenTelemetry has no way of knowing how you use 
the project.

Tell us about your scenarios:
- What environments you use it
- How do you use it, what do you like the most
- What’s missing

This and other feedback you can share via various 
communication options:

Gitter: https://gitter.im/open-telemetry/community 
GitHub: https://github.com/open-telemetry/community 
E-mails: cncf-opentelemetry-community@lists.cncf.io 
SIG and community meetings: calendar

https://gitter.im/open-telemetry/community
https://github.com/open-telemetry/community
mailto:cncf-opentelemetry-community@lists.cncf.io
https://calendar.google.com/calendar/embed?src=google.com_b79e3e90j7bbsa2n2p5an5lf60%40group.calendar.google.com&ctz=America%2FLos_Angeles


Q&A
Governance committee joins us for panel Q&A

● Ben Sigelman, LightStep
● Bogdan Drutu, Google
● Constance Caramanolis, Splunk
● Liz Fong-Jones, Honeycomb
● Morgan James McLean, Google
● Sarah Novotny, Microsoft
● Sergey Kanzhelev, Microsoft
● Ted Young, LightStep
● Yuri Shkuro, Uber




