X

KubeCon CloudNativeCon
North America 2019

wr

On the Security of Copying
To and From Live Containers

Yuval Avrahami & Ariel Zelivansky
Palo Alto Networks

mg‘f- Z.‘.!’I ‘ ng‘f- }’I
l’\ l’\ I‘\“
)l I

Copy

Background Vulnerabilities

Takeaways

»

Containers 101

» Restricted processes chrooted to a
separate filesystem

Starting a Container

standard tool for
running containers

[docker runJ @ runC - the industry

runc init]

Starting a Container

[.docker 'runJ » Namespaces

I » Cgroups

© Chroot to image fs
(/var/.../docker/$ctrid/merged)

© Drop capabilities

o LSMs (AppArmor)

Starting a Container

[mm. ,.u,.] - It's alive!

{ = »[runc init]

nnnnnnnnn

[docker run:.]

L ' -[runc init }—ﬁwmﬂ—-{ /bin/sleep]

Container ’ Container

> docker run ubuntu sleep

Starting a Container

» Result:
[/bin/sleep J

Container

> docker run ubuntu sleep

Engine or Runtime?
[CLI]

.

- build

| pullé %’JSh Container Engines
'ps,logs... <

run
exec _ _
pause Container Runtimes

Kill RCJRUNC

LXC

Copy Command

« Copy from a container to host
« Copy from host to container
« Copy between containers

> docker cp /tmp/file ubuntu container:/tmp/file

Copy Vulnerabilities Discovered

B Podman [Kuberenets [Docker

2014 2018 2019

> podman cp host file ctr:/dir/abc

» Build container path (from host’s view)
o /var/lib/../$Sctrid/merged + /dir/abc

« Then copy
> cp host file /var/lib/../$ctrid/merged/dir/abc

So What Could Go Wrong?

» Symlinks!

Case #1 - Podman CVE-2019-10152

e Symlinks resolved under host root
fake dir -> /critical/path
> podman cp host file ctr:/fake dir/ab

/critical/path/ab 5'

Docker - Copying In

1. Resolve container path in container root
> Add resolved path to container mount point

5. Copy
fake dir -> /critical/path
> docker cp host file ctr:/fake dir/abc

1. /critical/path/abc
2. /var/lib/.../Sctrid/merged + /critical/path/abc

2. cphost file /var/.../merged/critical/path/abc

Case #2 - Docker CVE-2018-15664

e Symlink exchange race attack
docker cp /host file ctr:/somedir/file

1. /somedir/file
2. /var/lib/.../$Sctrid/merged + /somedir/file

somedir -> /critical/path
3. cp /host file /var/lib/.../merged/somedir/file

/critical/path/file

Sort of partially enter the container!
Fork and run helper binary
Partially enter container (chroot)
Do all steps that can have symlink issues

* Symlinks are resolved under the accessing process root

Docker - Copying Out

« Daemon forks and runs docker-tar
o Chroot to container ”@f’
o Tar the requested files s
o Pass back tar to docker daemon
© No symlink issues!

So What Could Go Wrong?

» You're partially entering the container...

© Creating a bridge between the container and
the host

Case #3 - Docker CVE-2019-14271

e Full host compromise upon copying out

e docker-tar chroots to the container
o Golang v1.11 feature/bug - some packages (net,
os/user) with cgo (embedded C code)
dynamically load shared libraries at run time
e docker-tar dynamically loads 1ibnss *.so
libraries from the container!

Case #3 - Docker CVE-2019-14271

® Attack scenarios
o Malicious image with bad
libnss files.so
o Attacker compromised a container and
switched 1ibnss files.so

® PoC

Case #3 - Docker CVE-2019-14271

® Fix - Force lib loading before chroot

ﬂ+ func init() {

* // initialize nss libraries in Glibc so that the dynamic libraries are loaded in the host
// environment not in the chroot from untrusted files.

user.Lookup("docker")

net.LookupHost("localhost")

+ + + + +
|
I

Fully Entering the Container

» Helper binary runs inside the container
© Fully containerized process (docker exec)
© Helper process can't directly access host

What Could Go Wrong

© Your helper binary is exposed to attackers
In the container

kubectl cp doc

C p example

Mimportant Note!!! # Requires that the 'tar’ binary is present in your container # image. If 'tar' is
not present, 'kubectl cp’ will fail. # Copy /tmp/foo_dir local directory to /tmp/bar_dir in a remote
pod in the default namespace

Copy files and directories to and from containers.

Usage

Flags

Name Shorthand Default Usage
container ¢ Container name. If omitted, the first container in the pod will
be chosen
no- false The copied file/directory's ownership and permissions will not
preserve be preserved in the container

od>:/tmp/foo /tmp/bar

Kubernetes Implementation

« To copy files from a container

o Kubectl uses the container’s tar binary to
archive requested files, unpacks at host

o What if an attacker replaces tar binary?

Case #4 - Kubernetes CVE-2018-1002100

March 2018 Exploiting path traversal in kubect1 cp
Michael Hanselmann The kubectl cp command uses the tar program installed within a container to create

an archive. It then proceeds to unpack the archive on the client. When the container is
controlled by a malicious party who can get a victim to copy any file from a container,

i.e. for debugging, they could overwrite any file writable by the victim and whose path

can be predicted.

This behaviour can be confirmed in kubectl v1.9.5 as well as Red Hat's OpenShift
Origin 3.7.2, a downstream consumer of Kubernetes code. It's a result of the code in
kubernetes/pkg/kubectl/cmd/cp.go:untarall USiNg unsanitized filenames from the tar

headers as input to filepath.Join. It's been fixed in Kubernetes 1.9.6 and 1.10
(Kubernetes issue 61297).

The client code doesn't set the file mode, hence the PoC uses a plain text file. If the
attacker knows the path of an executable writable by the victim (or the latter runs the
client as root), executables can be replaced and code execution on the client is
gained. There are ways to gain code execution from non-executable files.

While not demonstrated, it's to be expected that a modified and malicious K8s API
server could inject arbitrary files into any program execution request originating from
a file copy and wouldn't even need a prepared and explicitly requested container.

Case #4 - Kubernetes CVE-2018-1002100

e Classic directory traversal

e Tar file includes path with ../ and can escape
target directory
© /some/remote/dir/../../../../tmp/foo
o Writesto /tmp/foo

e Fixed by sanitizing path

Case #4.5 - Kubernetes CVE-2019-1002101

e Symlinks!

e Tar format supports files, directories and
symlinks

e S0 what?

Case #4.5 - Kubernetes CVE-2019-1002101

e Create a malicious tar that has a header with
symlink to an outside directory
o /sym -> /critical/path
0 /sym/malicous file
e Surprise!
0 /critical/path/malicious file
o Kubectl copies last file to the symlink target

Case #4.5 - Kubernetes CVE-2019-1002101

e Disclosed to the Kubernetes and Openshift security
teams, patch was issued
e Redesign suggested

Improve kubectl cp, so it doesn't require the tar binary in the [Newissus |
container #58512

luksa opened this issue on Jan 19, 2018 - 23 comments

l luksa commented on Jan 19, 2018 « edited v Member +@ - Assignees

No one assigned)
Uncomment only one, leave it on its own line:

/kind feature Labels
kind/feature
What happened: i
Kubectl cp currently requires the container we're copying into to include the tar binary. This is sigl o PE N s H | F T
7 o SR ¢ R : sig/node
problematic when the container image is minimal and only includes the main binary run in the by Red Hat'
container and nothing else.
Projects
What you expected to happen:
Docker now has docker cp , which can copy files into a running container without any prerequisites Nangiyet
on the container itself. Kubectl cp could use that mechanism. Obviously, this will require introducing
a new feature into CRI, so it's not a small task. Milestone

. No milestone
Why we need this:

This will enable users to debug an existing (running) container, which is based on the scratch
image and contains nothing else but the main app binary. Users would be able to get any binary they Notifications Customize
need into the container. An alternative solution could be to mount an additional volume (possibly

. < ¢ z . R 4x Unsubscribe
from another container image) into a running pod (if that feature is ever implemented).

You're receiving notifications because

25 you're subscribed to this thread.

Case #4.5 - Kubernetes CVE-2019-11246

e CNCF Security Audit later revealed the fix was
insufficient

¥ }
if mode&os.ModeSymlink != 0 { if mode&os.ModeSymlink != @ {
linkname := header.Linkname linkname := header.Linkname
= // error is returned if linkname can't be made relative to destFile, + // We need to ensure that the link destination is always within boundries
= // but relative can end up being ../dir that's why we also need to + // of the destination directory. This prevents any kind of path traversal
— // verify if relative path is the same after Clean-ing + // from within tar archive.
- relative, err := filepath.Rel(destFile, linkname) + if l!isDestRelative(destDir, linkJoin(destFileName, linkname)) {
- if path.IsAbs(linkname) &% (err != nil || relative != + fmt.Fprintf(o.I0Streams.ErrOut, "warning: link %q is pointing to %g which
stripPathShortcuts(relative)) { is outside target destination, skipping\n", destFileName, header.Linkname)
- fmt.Fprintf(o.I0Streams.ErrOut, "warning: link %q is pointing to %q which
is outside target destination, skipping\n", outFileName, header.Linkname)
continue continue
} }
- if err := os.Symlink(linkname, outFileName); err != nil { + if err := os.Symlink(linkname, destFileName); err != nil {
return err return err
} }
} else { } else {
- outFile, err := os.Create(outFileName) + outFile, err := os.Create(destFileName)
if err != nil { if err != nil {
return err return err

Case #4.5 - Kubernetes CVE-2019-11249

e Symlink restriction is (still) not easy

MOONF1sh commented on Jul 22 « edited by tpepper ~ Contributor | +(@) *** Reviewers

w seans3
What type of PR is this?
/kind bug ‘ derekwaynecarr

A

What this PR does / why we need it:

Assignees
clean up unused code and refactors.

w seans3
Which issue(s) this PR fixes: B tallclair
Fixes #

Labels
Special notes for your reviewer:

approved

Does this PR introduce a user-facing change?: area/kubectl

cncf-cla: yes

Fix CVE-2019-11249: Incomplete fixes for CVE-2019-1002101 and CVE-2019-11246, kubectl cp kind/bug

Igtm

release-note
o ;# refactors to kubernetes CP command v bad1802 sig/cli
size/L

Kubernetes Future

« KEP future-of-kubectl-cp

kubernetes-sig-cli »
Proposal to drop kubectl cp in 1.16
32 posts by 16 authors @

| *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Maciej Szulik Hey, Over the past 6 months sig-cli and security team are constantly involved in fixing security related issues with kubectl cp. This process involves myself, Jordan Liggitt, Tim Aliclair and a couple of other people needed
Brendan Burns (side note: for some reason your message is rendering as light gray on white [at least in my browser], which makes it really hard to read) I'm strongly concerned about CLI folks taking out features that are useful, but
Jordan Liggitt I'm a strong +1 on removal. Making kubectl provide a transport you can use to run other tools makes sense to me and works well. | don't think trying to reproduce a unix toolset inside kubectl is a good trajectory,
Brendan Burns +SIG-usability | think everyone would be wise to consider why Docker was so successful when much of the pieces that it was built from had been in market a long time. A big part of their success was their devotion to
Phillip Wittrock Should "kubectl cp’ be the way we recommend to copy a file out of the cluster? Why use pipe + “tar’ instead "kubectl cp’: 1. tar is more transparent about the mechanics of how the file is being copied\ 2. tar provides
Brendan Burns All of the same arguments could be made for removing scp in favor of ssh pipe to tar, and yet | don't hear anyone clamoring for the removal of scp (nor should they) Just because something is possible doesn't make it
Brian Grant | think there were different reasons, but it's not really relevant for this discussion. Even Docker made a choice to draw the line somewhere on functionality. And it became a building block for scheduling systems like

Tim Allclair | am +1 on removing kubect] cp, for obvious security reasons. If we're going to make an argument to keep this feature for it's usability, then I'd want to see a commitment to improving that useability. IMO, pipe to tar is

Stephen Aug (+sIG Team) ive of the outcome of this discussion (remove vs leave in place), I'm a pretty strong -1 on making any moves on this for the 1.16 cycle. - Code Freeze is on Thursday[1] - No
Matt Farina Can we consider the user experience for a moment. What an average end user, who isn't part of the community, is going to need or expect. Let's say a new k8s user or someone needs to copy a file for the first time has to
Brendan Burns Given the level of discussion on this thread and the release timeline that Stephen mentions, it seems pretty clear to me that dropping in 1.16 is off the table. Does anyone disagree? | think we need proper time to
Stephen Augustus *whispers everyone's favorite acronym (KEP) while ducking tomatoes*

Brendan Burns That is also a very good point. Honestly, | think we're long past the tomato throwing part (and I'm definitely one of the late people to sign onto the KEP band wagon), and have collectively seen the value of having a
Derek Carr | am +1 on dropping the command in the future per the reasons noted. | am supportive of the SIG ceasing further enhancements in that area pending the KEP.

Arturo Tarin Hello After reading carefully all the arguments exposed and the links attached in this thread, all of them are more than reasonable. +1 for KEP

Brendan Burns fwiw, as a datapoint: SCP has been vulnerable to numerous CVE (even in the past year, including a directory traversal bug) e.g. https://nvd.nist.gov/vuln/detail/CVE-2019-6111 https://www.cvedetails.com/cve/CVE-2018-

Gareth Rushgrove To the point of data and usage on CLI commands. Not perfect obviously, but here's a of of kubect! on GitHub. So 6232 occurrences as of today. Of those, ~1400 are in scripts of

Matt Farina When someone goes to draw up a KEP the deprecation policy should be taken into account. i i il i i i i flag: li Just wanted to throw that

Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27
Aug 27

Aug 27

Design Suggestion

© Freeze with freezer cgroup
© Avoid races

+ Enter with caution
© Mount ns and chroot (LXD) L T
© Do not use anything from inside the contalner
o Statically linked helper binaries

New syscall!

openat?2 () - restrict path resolution
LOOKUP_BENEATH
LOOKUP_IN_ROOT
LOOKUP_NO_ SYMLINKS
LOOKUP_ NO_ MAGICLINKS
LOOKUP_NO_XDEV

o pa\oatogs“

& o

KubeCon CloudNativeCon
North America 2019

Thank you

Ariel Zelivansky | azelivansky@paloaltonetworks.com

Yuval Avrahami | yavrahami@ paloaltonetworks.com

Unit42.paloaltonetworks.com

Docker moby#5720, moby#6000, CVE-2018-15664,
CVE-2019-14271

Kubernetes CVE-2018-1002100, CVE-2019-1002101,
CVE-2019-11246, CVE-2019-11249

Podman CVE-2019-10152

