

Measuring and Optimizing
Kubernetes Usage at Lyft

Richard Liu, Senior SWE @ Google
Konstantin Gizdarski, SWE @ Lyft

Who are we?

What will you learn?
Lyft and Cloud Infrastructure Spending

Shipping Infraspend 2.0

Machine Learning Platform at Lyft

Extending Infraspend 2.0 to support Multi-tenant Platforms

Ingesting and Presenting Kubernetes Data in Infraspend

Why this matters!

How you can build something similar using (mostly) open source
technologies.

What is the problem?

Larger AWS Bill
Increased scale and additional engineers
doing more things.

Low visibility
Little to no insight on which internal

services are spending the most money.

Before Infraspend...

Lyft’s first attempt at cloud spend
visibility and management.

The spreadsheet days

Shipping Infraspend 2.0
Standardized ETL pipeline

Download the Cost and Usage Report
(CUR) and process/store data using
same infra as rest of Lyft (Apache
Airflow, Hive, Druid).

Empower future tools

Enables ad-hoc queries, custom
dashboards, and other use cases (RI
analysis, capacity planning).

Blend together RI and EDP discounts
to provide a “what you see is what you
get” view of AWS spend. Allows simple
and correct analysis of spend changes.

true_cost lyft_label

Assign usage to a Lyft-specific string
based on cost allocation tags, resource
IDs, and platform usage. These are
then mapped to teams and orgs.

Shipping Infraspend 2.0

Shipping Infraspend 2.0

Kubernetes (and other platforms)
reduces visibility into spend.

C5.18xlarge Usage on Core Kubernetes Clusters Over Past Year

Kubernetes @ Lyft
Dozens of clusters.

● Core Kubernetes clusters.
● Cron job clusters.
● Flyte.
● Continuous integration.
● Deploys.
● Machine Learning.
● Machine Learning for Level 5.

Let’s take a closer look at machine
learning on Kubernetes.

A Tour of Kubeflow

16

Notebook Instances

Usage pattern:

● High Availability

● Low preemption

● Multiple users

● Potentially idle notebooks

KFServing
• Scalable,

Kubernetes-native

intererencing

• Usage pattern:

‒ High Availability

‒ Quick addition of

capacity

‒ Potentially need GPUs

Kubeflow Pipelines
- End-to-end ML

Workflows

- Usage pattern:

- Scheduling

dependencies can

cause bottlenecks

- Workflows can run

regularly
-
-

Hyperparameter Optimization

20

● Hyperparameters are
external to the model (unlike
model parameters)

● Examples:
○ learning rate
○ number of layers
○ kernel type

● Hyperparameter optimization
- finding the best HP values
such that model
performance is maximized

Source:
https://www.slideshare.net/AliceZheng3/evaluating-machine-learning-models-a-beginners-g
uide

How Does HP Tuning Work?

Katib

● Framework-agnostic, production-ready

hyperparameter tuning

● Usage Pattern:

○ Can be resource intensive

○ Potentially high capacity demand

○ Configurable parallelism

22

So What Does It All Mean?

Extending Infraspend 2.0
with Multi-Tenant Platform
Attribution

What were our goals?

Modular and Extensible
Solution should extend to multiple
platforms and attribution models.

Start with Kubernetes
Kubernetes usage was growing fast and

visibility was necessary now.

Platform for Platforms
Provide clear documentation for how
additional platforms to send us their data.
Platform owners know how to attribute
their platform best.

Multi-tenant Platform Concepts

Attribution Schedule
Breaks down the usage of a larger
platform, per hour, by attribution label.

Practically speaking, a Hive table with
certain columns.

Platform Definition
Concept that ties together multiple

resources under a platform and divides
all resources according to the provided

Allocation Schedule.

Practically speaking: a configuration file
that gets ingested and used in a join.

Multi-tenant Platform Architecture

Attribution schedule generation
● Use standard Prometheus + Kubernetes pipeline that is centrally

supported and maintained.
○ Either CPU or memory.

● Push custom data stream to build attribution schedule; you own the
metric emission and we own the pipeline.
○ GPU, I/O, complex models.
○ Non-Kubernetes platforms.

● Provide and support own ready-made attribution schedule that has the
proper format; you own everything, but you get the most control.

Attribution Schedule Properties
● Has all required expected

platforms.

● Has an entry for each hour
within the day.

● Total usage within a platform
and sub-platform adds up to
exactly 1.00.

Attribution Schedule

Zoom in on providing
namespace level attribution
for Kubernetes.

Infraspend Data

Attribution Schedule

Enriched Infraspend Data

Cost Models
● CPU Allocation.

● Memory Allocation.

● GPU Allocation.

● max(CPU, memory, GPU).

● Deconstruct from cloud service provider
and weigh all resource costs.

● I/O, storage, etc.

Mind the Unallocated Capacity
● CPU Allocation.

Infraspend is about allocation, not efficiency of
that allocation.

We built additional infrastructure and products
to monitor efficiency.

Collecting Kubernetes Metrics

Kubernetes Usage Tracker
Service
Light-weight service, scrapes metrics
from Prometheus about cluster capacity,
pod labels, node labels, and memory and
CPU utilization.

Lessons

● Filter metrics for only running pods.
● Include instance type as dimension. Attribute pods

correctly to instance.
● Have adequate monitoring by metric, cluster, region, etc.

Example Queries

● kube_pod_container_resource_requests_cpu_cores *
on(pod) group_left
kube_pod_status_phase{phase="Running",
job="kubernetes-service-endpoints"}

● kube_node_status_capacity

Computing Allocation Schedule

Rollup Prometheus Metrics in
Hive

Light-weight service, scrapes metrics
from Prometheus about cluster
capacity, pod labels, node labels, and
memory and CPU utilization.

Interpolate and Validate in
Python

Light-weight service, scrapes metrics
from Prometheus about cluster
capacity, pod labels, node labels, and
memory and CPU utilization.

Challenges ➡ Lessons
Challenge Lesson

Lots of components; at scale, each one
misbehaves sometimes.

● Understand dependencies.
● No substitute for building the system.
● Assume every step is broken and do

sanity checks at each one.

Operational load is high across lots of
platforms.

● Log rate of dataflow.
● Interpolate data so that small blips

don’t break Infraspend.
● Build automated notifications to

platform owners when their systems
are not functioning properly.

Infraspend 2.0 with
Kubernetes

Migrating to Kubernetes

Tracking Migration Impact

Expanding Functionality
Impact: side-by-side visualization of Kubernetes
costs.

Impact: allow engineering teams to track their
costs across cloud products and platforms.

Expanding FunctionalityLesson: for migrations, enforce namespaces
match the service name to naturally tie usage
together.

Lesson: set minimum number of pods per cluster
gradually lower to ensure that the system is still
reliable.

Unallocated Cluster Capacity

Expanding Functionality
Impact: raise awareness of unallocated capacity
across platforms and enable tracking.

Expanding FunctionalityLessons to lower free space:

● Tune cluster scaling policies.

● Tune pod scaling policies.

● Choose more suitable scheduler.

● Deploy more services.

Expanding Kubernetes Allocation Tracking

● Support more allocation schedules for Kubernetes.

● Container name as dimension in Kubernetes data.

● Custom pod labels as dimension in Kubernetes data.

● Work with teams to help them build custom views into
the data.

Mostly Open Source

So you can replicate it at your company!

Looking ahead!
● More platforms.

● Finer granularity.

● Deeper insights beyond allocation.

● As close as possible to real-time.

● Deeper integration with frameworks, such as experimentation, so
we can track the cost of features across multiple services.

Thank you!

Questions?

Join us for some local beer, wine, and tacos!

Lyft Happy Hour
Date: Tuesday, Nov 19
Time: 7pm-10pm
Where: Thorn Barrio Logan (1745 National Avenue, San Diego, CA 92113)

RSVP: https://lyft-kubecon.splashthat.com/ (you can also register at the door)

https://lyft-kubecon.splashthat.com/

Convert Model to Lyftlearn Template
class Model(object):
 HYPERPARAMETERS = [{'name':'dropout','type':'float', 'default_value':0.2},
 {'name':'layers', 'type':'int', 'default_value':3}]

 def __init__(self, hyperparameters = None):
 hyperparameters = hyperparameters or {}
 # Read and convert hyperparameters
 self.dropout = hyperparameters["dropout"]
 self.layers = hyperparameters["layers"]

 def train(self):
 pass

 def init_predict():
 pass

 def predict(self, request_data):
 pass

 def batch_predict(self):
 pass

Hyperparameters

Convert Model to Lyftlearn Template
class Model(object):
 HYPERPARAMETERS = [{'name':'dropout','type':'float', 'default_value':0.2},
 {'name':'layers', 'type':'int', 'default_value':3}]

 def __init__(self, hyperparameters = None):
 hyperparameters = hyperparameters or {}
 # Read and convert hyperparameters
 self.dropout = hyperparameters["dropout"]
 self.layers = hyperparameters["layers"]

 def train(self):
 pass

 def init_predict():
 pass

 def predict(self, request_data):
 pass

 def batch_predict(self):
 pass

Train Function

Convert Model to Lyftlearn Template
class Model(object):
 HYPERPARAMETERS = [{'name':'dropout','type':'float', 'default_value':0.2},
 {'name':'layers', 'type':'int', 'default_value':3}]

 def __init__(self, hyperparameters = None):
 hyperparameters = hyperparameters or {}
 # Read and convert hyperparameters
 self.dropout = hyperparameters["dropout"]
 self.layers = hyperparameters["layers"]

 def train(self):
 pass

 def init_predict():
 pass

 def predict(self, request_data):
 pass

 def batch_predict(self):
 pass

Predict functions

Train Function example
from lyftlearnclient.metrics import Metrics

def train(self):
 df = presto.DatabaseTool().query('select foo from bar')
 labels = df['duration']
 training_data = df.drop(columns=['duration'])
 x_train, x_validate, y_train, y_validate = model_selection.train_test_split(
 training_data, labels, test_size=0.1)
 rf = RandomForestRegressor(n_estimators=self.n_estimators,

 max_features=self.max_features)
 rf.fit(x_train, y_train)
 self.model = rf
 train_mse = sklearn.metrics.mean_squared_error(y_train, rf.predict(x_train))
 validate_mse = sklearn.metrics.mean_squared_error(y_validate,
 rf.predict(x_validate))

 metrics.emit('train_rms', train_rms)
 metrics.emit('validate_rms', validate_rms)
 try:
 with s3.open(MODEL_PATH, mode='wb') as f:
 joblib.dump(rf, f)
 except Exception as e:
 print('Failed to save model', e)

 Metrics
 (key for HPO)

Automatic Hyperparameter tuning

Automatic Hyperparameter tuning

Automatic Hyperparameter tuning

Automatic Hyperparameter tuning

Select the Search
Algorithm

Automatic Hyperparameter tuning

Select the
hyperparameters to
be tuned

Define the search
space for each

Automatic Hyperparameter tuning

Define the primary
metric to be used
for optimization

Declare additional
metrics you would
like to be tracked.

Automatic Hyperparameter tuning

Specify the
Compute resources

Add an (optional)
name

Automatic Hyperparameter tuning

Automatic Hyperparameter tuning

