


Measuring and Optimizing 
Kubernetes Usage at Lyft

Richard Liu, Senior SWE @ Google
Konstantin Gizdarski, SWE @ Lyft



Who are we?



What will you learn?
Lyft and Cloud Infrastructure Spending

Shipping Infraspend 2.0

Machine Learning Platform at Lyft

Extending Infraspend 2.0 to support Multi-tenant Platforms

Ingesting and Presenting Kubernetes Data in Infraspend

Why this matters!

How you can build something similar using (mostly) open source 
technologies.



What is the problem?

Larger AWS Bill
Increased scale and additional engineers 
doing more things.

Low visibility 
Little to no insight on which internal 

services are spending the most money.





Before Infraspend...

Lyft’s first attempt at cloud spend 
visibility and management.

The spreadsheet days



Shipping Infraspend 2.0
Standardized ETL pipeline

Download the Cost and Usage Report 
(CUR) and process/store data using 
same infra as rest of Lyft (Apache 
Airflow, Hive, Druid).

Empower future tools

Enables ad-hoc queries, custom 
dashboards, and other use cases (RI 
analysis, capacity planning).

Blend together RI and EDP discounts 
to provide a “what you see is what you 
get” view of AWS spend. Allows simple 
and correct analysis of spend changes.

true_cost lyft_label

Assign usage to a Lyft-specific string 
based on cost allocation tags, resource 
IDs, and platform usage. These are 
then mapped to teams and orgs.





Shipping Infraspend 2.0



Shipping Infraspend 2.0



Kubernetes (and other platforms) 
reduces visibility into spend.



C5.18xlarge Usage on Core Kubernetes Clusters Over Past Year



Kubernetes @ Lyft
Dozens of clusters.

● Core Kubernetes clusters.
● Cron job clusters.
● Flyte.
● Continuous integration.
● Deploys.
● Machine Learning.
● Machine Learning for Level 5.



Let’s take a closer look at machine 
learning on Kubernetes.



A Tour of Kubeflow
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Notebook Instances

Usage pattern:

● High Availability

● Low preemption

● Multiple users

● Potentially idle notebooks



KFServing
• Scalable, 

Kubernetes-native 

intererencing 

• Usage pattern:

‒ High Availability

‒ Quick addition of 

capacity

‒ Potentially need GPUs



Kubeflow Pipelines
- End-to-end ML 

Workflows

- Usage pattern:

- Scheduling 

dependencies can 

cause bottlenecks

- Workflows can run 

regularly
-
-



Hyperparameter Optimization
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● Hyperparameters are 
external to the model (unlike 
model parameters)

● Examples:
○ learning rate
○ number of layers
○ kernel type

● Hyperparameter optimization 
- finding the best HP values 
such that model 
performance is maximized

Source: 
https://www.slideshare.net/AliceZheng3/evaluating-machine-learning-models-a-beginners-g
uide



How Does HP Tuning Work?



Katib

● Framework-agnostic, production-ready 

hyperparameter tuning

● Usage Pattern:

○ Can be resource intensive

○ Potentially high capacity demand

○ Configurable parallelism
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So What Does It All Mean?



Extending Infraspend 2.0 
with Multi-Tenant Platform 
Attribution



What were our goals?

Modular and Extensible
Solution should extend to multiple 
platforms and attribution models.

Start with Kubernetes 
Kubernetes usage was growing fast and 

visibility was necessary now.

Platform for Platforms
Provide clear documentation for how 
additional platforms to send us their data. 
Platform owners know how to attribute 
their platform best.



Multi-tenant Platform Concepts

Attribution Schedule
Breaks down the usage of a larger 
platform, per hour, by attribution label.

Practically speaking, a Hive table with 
certain columns.

Platform Definition 
Concept that ties together multiple 

resources under a platform and divides 
all resources according to the provided 

Allocation Schedule.

Practically speaking: a configuration file 
that gets ingested and used in a join.



Multi-tenant Platform Architecture



Attribution schedule generation
● Use standard Prometheus + Kubernetes pipeline that is centrally 

supported and maintained.
○ Either CPU or memory.

● Push custom data stream to build attribution schedule; you own the 
metric emission and we own the pipeline.
○ GPU, I/O, complex models. 
○ Non-Kubernetes platforms.

● Provide and support own ready-made attribution schedule that has the 
proper format; you own everything, but you get the most control.



Attribution Schedule Properties
● Has all required expected 

platforms.

● Has an entry for each hour 
within the day.

● Total usage within a platform 
and sub-platform adds up to 
exactly 1.00.

Attribution Schedule



Zoom in on providing 
namespace level attribution 
for Kubernetes.



Infraspend Data

Attribution Schedule

Enriched Infraspend Data



Cost Models
● CPU Allocation.

● Memory Allocation.

● GPU Allocation.

● max(CPU, memory, GPU).

● Deconstruct from cloud service provider 
and weigh all resource costs.

● I/O, storage, etc.



Mind the Unallocated Capacity
● CPU Allocation.



Infraspend is about allocation, not efficiency of 
that allocation.

We built additional infrastructure and products 
to monitor efficiency.



Collecting Kubernetes Metrics

Kubernetes Usage Tracker 
Service
Light-weight service, scrapes metrics 
from Prometheus about cluster capacity, 
pod labels, node labels, and memory and 
CPU utilization.

Lessons

● Filter metrics for only running pods.
● Include instance type as dimension. Attribute pods 

correctly to instance.
● Have adequate monitoring by metric, cluster, region, etc.

Example Queries

● kube_pod_container_resource_requests_cpu_cores  * 
on(pod) group_left 
kube_pod_status_phase{phase="Running", 
job="kubernetes-service-endpoints"}

● kube_node_status_capacity



Computing Allocation Schedule

Rollup Prometheus Metrics in 
Hive

Light-weight service, scrapes metrics 
from Prometheus about cluster 
capacity, pod labels, node labels, and 
memory and CPU utilization.

Interpolate and Validate in 
Python

Light-weight service, scrapes metrics 
from Prometheus about cluster 
capacity, pod labels, node labels, and 
memory and CPU utilization.



Challenges ➡ Lessons
Challenge Lesson

Lots of components; at scale, each one 
misbehaves sometimes.

● Understand dependencies.
● No substitute for building the system.
● Assume every step is broken and do 

sanity checks at each one.

Operational load is high across lots of 
platforms.

● Log rate of dataflow.
● Interpolate data so that small blips 

don’t break Infraspend.
● Build automated notifications to 

platform owners when their systems 
are not functioning properly.



Infraspend 2.0 with 
Kubernetes



Migrating to Kubernetes



Tracking Migration Impact



Expanding Functionality
Impact: side-by-side visualization of Kubernetes 
costs.

Impact: allow engineering teams to track their 
costs across cloud products and platforms.



Expanding FunctionalityLesson: for migrations, enforce namespaces 
match the service name to naturally tie usage 
together.

Lesson: set minimum number of pods per cluster 
gradually lower to ensure that the system is still 
reliable. 



Unallocated Cluster Capacity



Expanding Functionality
Impact: raise awareness of unallocated capacity 
across platforms and enable tracking.



Expanding FunctionalityLessons to lower free space:

● Tune cluster scaling policies.

● Tune pod scaling policies.

● Choose more suitable scheduler.

● Deploy more services.



Expanding Kubernetes Allocation Tracking

● Support more allocation schedules for Kubernetes.

● Container name as dimension in Kubernetes data.

● Custom pod labels as dimension in Kubernetes data.

● Work with teams to help them build custom views into 
the data.







Mostly Open Source

So you can replicate it at your company!



Looking ahead!
● More platforms.

● Finer granularity.

● Deeper insights beyond allocation.

● As close as possible to real-time.

● Deeper integration with frameworks, such as experimentation, so 
we can track the cost of features across multiple services.



Thank you!

Questions?



Join us for some local beer, wine, and tacos! 

Lyft Happy Hour
Date: Tuesday, Nov 19
Time: 7pm-10pm
Where: Thorn Barrio Logan (1745 National Avenue, San Diego, CA 92113)

RSVP: https://lyft-kubecon.splashthat.com/ (you can also register at the door)

https://lyft-kubecon.splashthat.com/


Convert Model to Lyftlearn Template
class Model(object):
  HYPERPARAMETERS = [{'name':'dropout','type':'float', 'default_value':0.2},
                     {'name':'layers', 'type':'int', 'default_value':3}]

  def __init__(self, hyperparameters = None):
    hyperparameters = hyperparameters or {}
    # Read and convert hyperparameters
    self.dropout = hyperparameters["dropout"]
    self.layers = hyperparameters["layers"]

  def train(self):
    pass

  def init_predict():
    pass

  def predict(self, request_data):
    pass

  def batch_predict(self):
    pass

Hyperparameters
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Predict functions



Train Function example
from lyftlearnclient.metrics import Metrics

def train(self):
        df = presto.DatabaseTool().query('select foo from bar')
        labels = df['duration']
        training_data = df.drop(columns=['duration'])
        x_train, x_validate, y_train, y_validate = model_selection.train_test_split(
            training_data, labels, test_size=0.1)
        rf = RandomForestRegressor(n_estimators=self.n_estimators,

      max_features=self.max_features)
        rf.fit(x_train, y_train)
        self.model = rf
        train_mse = sklearn.metrics.mean_squared_error(y_train, rf.predict(x_train))
        validate_mse = sklearn.metrics.mean_squared_error(y_validate,
             rf.predict(x_validate))

        metrics.emit('train_rms', train_rms)
        metrics.emit('validate_rms', validate_rms)
        try:
            with s3.open(MODEL_PATH, mode='wb') as f:
                joblib.dump(rf, f)
        except Exception as e:
            print('Failed to save model', e)

     Metrics
      (key for HPO)



Automatic Hyperparameter tuning



Automatic Hyperparameter tuning



Automatic Hyperparameter tuning



Automatic Hyperparameter tuning

Select the Search 
Algorithm



Automatic Hyperparameter tuning

Select the 
hyperparameters to 
be tuned

Define the search 
space for each



Automatic Hyperparameter tuning

Define the primary 
metric to be used 
for optimization

Declare additional 
metrics you would 
like to be tracked.



Automatic Hyperparameter tuning

Specify the 
Compute resources

Add an (optional) 
name



Automatic Hyperparameter tuning



Automatic Hyperparameter tuning


