
Managing Helm Deployments with
GitOPS at CERN

Ricardo Rocha

@ahcorporto
ricardo.rocha@cern.ch

mailto:ricardo.rocha@cern.ch

Computing at CERN
Increased numbers, increased automation

1970s 2007

Computing at CERN
Increased numbers, increased automation

1970 2007

Computing at CERN
Increased numbers, increased automation

1970 2007

Computing at CERN
Increased numbers, increased automation

1970 2007

Automation and Efficiency

Provisioning Deployment Update

Physical
Infrastructure

Days or
Weeks

Minutes or
Hours

Minutes or
Hours

Utilization

Poor

Maintenance

Highly
Intrusive

Provisioning Deployment Update

Physical
Infrastructure

Days or
Weeks

Minutes or
Hours

Minutes or
Hours

Utilization

Poor

Maintenance

Highly
Intrusive

Cloud API
Virtualization

Minutes Minutes or
Hours

Minutes or
Hours

GoodPotentially
Less Intrusive

Provisioning Deployment Update

Physical
Infrastructure

Days or
Weeks

Minutes or
Hours

Minutes or
Hours

Utilization

Poor

Maintenance

Highly
Intrusive

Cloud API
Virtualization

Minutes Minutes or
Hours

Minutes or
Hours

GoodPotentially
Less Intrusive

Containers Seconds Seconds Seconds Very
Good

Less Intrusive

“ Where is my machine hosted? “

“ What is the state of the hypervisor? “

“ Could you check for noisy neighbors? “

But similar automation tools, ssh, systemd, syslog, etc

Physical to Virtualization and Cloud

“ How do i retrieve my application’s logs? And
how to log rotate? “

“ How do i access the node running container X ? “

“ How do i install package X on the nodes? “

“ Seems like one of the cluster node’s filesystem went
read-only... “

“ Docker, Kubernetes, Ingress … now Helm … this is
a lot of new stuff! “

Significant change in mindset and a steeper learning curve

And then to containers ...

Container Use Cases
Experiment Trigger farms

Spark as a Service, on demand Spark clusters on Kubernetes

KubeFlow and distributed ML training

Batch on Kubernetes, Native and HTCondor

WebLogic and other internal services

Making it easier...
Container Trainings, Workshops, Office Hours

One thing is similar … what is now called GitOps

We’ve used git for years to store and manage configuration

Maybe that can help onboarding more service managers

Puppet to Helm

Manifests vs Golang, YAML config for both

Much faster turn-around

Charts Repository
Initially package charts stored in plain S3

Moved to chartmuseum to have a management API, with S3 as backend

Mirrored and home grown chart repositories

All triggered by GitLab CI

Versions include commit hash (x.y.z-cern-x.y.z)

CERN

STABLE

INCUB.

OPENST
ACK

TUNGST
EN

...

git push
helm lint

helm test

helm package

git tag
helm lint

helm test

helm package

helm push

Umbrella Charts
Meta charts wrapping the different charts required per application

Units of deployment with all dependencies and any additional manifests

Stored separately as they manage cluster state (permissions and visibility)

First go relied on branches for environments and a custom structure

$ cat requirements.yaml
dependencies:
 - name: binderhub
 version: 0.2.0-575fb2a
 repository: https://charts.cern.ch/jupyterhub

$ ls templates
ds-gpu.yaml psp.yaml

$ ls
Chart.yaml requirements.yaml secrets.yaml templates/ values.yaml

Managing Secrets
Option 1: Building on Kubernetes Secrets or similar CRDs

No easy or obvious way to plug external secrets

Bitnami SealedSecrets: works well, but hard with existing charts

Vault an option to fully delegate secret management

Option 2: Take (part of) the helm values as secret data, not the resources

Versioning of secrets along the rest of the configuration

Futuresimple helm-secrets (existing plugin) with sops

A Barbican Secret Plugin for Helm
Similar interface to futuresimple helm-secrets

Builds on existing identity scheme to
access and manage encryption keys

$ helm --name <release> secrets
view secrets.yaml
edit secrets.yaml
install stable/nginx --values secrets.yaml
upgrade stable/nginx --values secrets.yaml
lint --values secrets.yaml

Similar wrapper for kubectl

https://github.com/cernops/helm-barbican

https://github.com/cernops/helm-barbican

Our end goal from the start

Relying on chart updates only

Flux and GitOps

Meta
Chart

Registry

git push

docker push

FluxCD

git pull

Helm
Release

CRD

$ helm install fluxcd/flux \
--namespace flux --name flux --values flux-values.yaml
--set git.pollInterval=1m
--set git.url=https://gitlab.cern.ch/.../hub

$ cat flux-values.yaml
rbac:
 create: true
helmOperator:
 create: true
 chartsSyncInterval: 5m
 configureRepositories:
 enable: true
 repositories:
 - name: jupyterhub
 url: https://charts.cern.ch/jupyterhub
 ...

Helm
Operator

Flux and GitOps

What’s in a Helm Release?
apiVersion: flux.weave.works/v1beta1
kind: HelmRelease
metadata:
 name: hub
 namespace: prod
spec:
 releaseName: hub
 chart:
 git: https://gitlab.cern.ch/.../hub.git
 path: charts/hub
 ref: master
 valuesFrom:
 - secretKeyRef:
 name: hub-secrets
 key: values.yaml
 values:
 binderhub:
 ...

This is how we plug our encrypted
values data

|-- charts
 |-- hub
 Chart.yaml requirements.yaml values.yaml
 |-- templates
 custom-manifest.yaml
|-- namespaces
 prod.yaml stg.yaml
|-- releases
 |-- prod
 hub.yaml
 |-- stg
 hub.yaml
|-- secrets
 |-- prod
 secrets.yaml
 |-- stg
 secrets.yaml

Use Case: JupyterHub + BinderHub
Demo time

Ongoing: GitOps for Cluster Lifecycle
Currently validating this solution to centrally manage upgrades

Reduce the scope of the cluster orchestration tool to base components

Let a single Flux HelmRelease manage all add-ons (staging, prod)

dependencies:
 - name: eosxd
 version: 0.3.1-cern-0.1.0-7+ba5e81
 repository: http://charts.cern.ch/cern
 - name: fluentd
 version: 2.2.1-cern-0.1.0-3+1c551a1
 repository: http://charts.cern.ch/stable
 - name: prometheus
 version: 9.3.1-cern-0.1.0-3+1c551a1
 repository: http://charts.cern.ch/stable
 - name: traefik
 version: 1.79.0-cern-0.1.0-3+1c551a1
 repository: http://charts.cern.ch/stable
 ...

http://charts.cern.ch/cern
http://charts.cern.ch/cern
http://charts.cern.ch/stable
http://charts.cern.ch/stable

Conclusion & Next Steps
Helm and (Argo) Flux give us a familiar toolset for containerized applications

Git as the source of truth

Helm v3 and goodbye Tiller

Helm Hub, Signed Helm Charts

(re) Consider automation of charts and container image updates

Cattle clusters, Blue / Green, Canary with Service Mesh

Next Steps
Helm v3 , goodbye Tiller

Signed charts

Questions?
LHC is in a long shutdown for the next year, underground visits possible

https://visit.cern

Follow our tech blog https://techblog.web.cern.ch

@ahcorporto , ricardo.rocha@cern.ch

https://visits.cern
https://techblog.web.cern.ch
mailto:ricardo.rocha@cern.ch

