Low Latency Multi-cluster Kubernetes Networking in AWS

2019-11-19 Paul Fisher @ Lyft

Paul Fisher

Tech Lead on Infra Compute
Willing Kubernetes into existence at Lyft

Agenda

- 1 Lyft Overview
- 2 Network Fundamentals
- 3 Lyft CNI Stack
- 4 In Production with Envoy
- 5 Future Work

Lyft Overview

Lyft's Scale

- Millions of rides per day
- More than 30 million riders
- More than 2 million drivers
- Available in all 50 US States, Toronto, and Ottawa

Lyft Kubernetes' Scale

Machine Learning

- Training Jobs
- Jupyter Notebooks
- GPU Workloads
- 5K+ Pods
- 10K+ Cores

Rideshare

- 100+ Stateless Micro Services
- Redundant Clusters per AZ
- 1 Production Envoy Mesh
- 10K+ Pods (HPAs!)
- 100K+ Containers (sidecars!)
- 50K+ Cores

Flyte

- Distributed Workflow Orchestration
- Executors for Spark, Hive, AWS Batch
- 10K+ Pods
- 5K+ cores

Lyft Kubernetes Timeline

Lyft Kubernetes Environment

Kubernetes 1.14

Moving to 1.16 before EOY

• Fedora (n-1) with cri-o

Mainline kernels
Minimal OS
systemd cgroup management

Ubuntu User Space

Lyft Developers like Ubuntu

Immutable Infrastructure

Packer AMIs

Terraform Orchestration

AWS

Lots and lots of EC2, EBS, and S3 us-east-1 and us-west-2 build outs

Redundant Per-AZ Clusters

Sets of clusters for staging and production Staggered roll-outs with limited blast radius

Lyft CNI Stack

VPC native

Low latency

High throughput

Pods are directly part of the Envoy Mesh

Network Fundamentals

Kubernetes Networking 101

- One IP per Pod
- Nodes support at least 110 Pods (IPs)
- All containers can communicate with all other containers without NAT
- All nodes can communicate with all containers (and vice-versa) without NAT
- The IP that a container sees itself as is the same IP that others see it as

Kubernetes AWS Network Options

/24 per Node

Overlay Networks

VPC Native Networks

/24 per EC2 Node

- Simple and straightforward
- Default 50 routes per VPC
- Previously 100 route max (2017), now 1000
- 1000 node cluster per VPC

Overlay Networks

- Cloud agnostic
- No limits on cluster size
- Insanely complex

SDN on top of an SDN IP-in-IP

BGP

Connectivity issues with existing VPC IPs
 Envoy mesh
 NAT

Lots of CNI plugin options

VPC Native Networks

- Simple and straightforward
- Pods receive VPC IP addresses
- Full connectivity with VPC
- Native network performance
- 2 main CNI plugin options

AWS - amazon-vpc-cni-k8s Lyft - cni-ipvlan-vpc-k8s

Lyft CNI Stack

Lyft VPC CNI plugin

Minimalist design

No DaemonSets

No Pods

No Runtimes

Stateless go binaries

Tested w/ cri-o & containerd

cri-o @ Lyft containerd @ Datadog

No Overlay Network

- IPvlan VPC interface
- Unnumbered P2P interface
- No asymmetric routing
- No VPC routing table changes
- Feature Complete

Running in production for 2 years

IPvlan Overview

- Created by Google in 2014
- Shipped with Linux3.18+
- Avoids bridging & packets transiting the default network namespace

- Ties host network adapters (ENIs) directly to Pods
- Minimal overhead
- Low latency, high throughput
- Ideal option for AWS VPC design

VPC Elastic Network Interface (ENI)

- Virtual network card
- 2 to 15 ENIs per EC2 instance

(depends on instance size)

• 6 to 50 IPs per ENI (depends on instance size)

- IPs assigned from within ENI subnet
- Kubernetes Network Conformance @ 8 ENI+ instance types

8 ENI instance types support 30 IPs per ENI

8*30 = 240 IPs

e.g. {c5,i3,r5}.4xlarge and above

Lyft ENI Management

- 16 Pod-N+15 [IP 14] 15 Pod-N+14 [IP 13] Pod-N+13 [IP 12] 13 Pod-N+12 [IP 11] Pod-N+11 [IP 10] 12 11 Pod-N+10 [IP 9] 10 Pod-N+9 [IP 8] Pod-N+8 [IP 7] Pod-N+7 [IP 6] Pod-N+6 [IP 5] Pod-N+5 [IP 4] Pod-N+4 [IP 3] Pod-N+3 [IP 2] Pod-N+2 [IP 1] Pod-N+1 [IP 0] ... ENI-N
- Lyft CNI plugin manages ENIs and IP assignment
- Boot ENI is reserved for the Kubernetes control plane

- Pods assigned to ENIs until full
- 60 second TTL for reusing IP addresses

(configurable)

Lyft Network Interfaces within a Pod

Primary IPvlan Interface (eth0)

- VPC IP address tied to an ENI
- Used for all VPC traffic
- Isolated from all other ENIs

Unnumbered P2P Interface (veth0)

- High-speed interconnect to host namespace
- Kubernetes node service comms (Pods w/ host networking, kube-proxy VIPs)
- Well-known IP address is borrowed on either side
- Internet egress over boot ENI

Lyft Pod Internet Egress

- Source NAT over primary private IP of the boot ENI
- Uses redundant, scalable
 Public IPv4 addr attribute
 feature of EC2 instances
- Most AWS Services on public Internet — use VPC Endpoints to avoid NAT

In Production with Envoy

Lyft Production Envoy Mesh

Lyft Pod Containers

Lyft Service

Python, Go, or JavaScript

Envoy

Envoy mesh sidecar

Runtime Config

Auto-updating config params/switches for services

Logging

Elasticsearch pipeline (logs not on stdout/stderr)

Stats

statsd pipeline

Business Metrics

Analytics pipeline

Lyft Envoy Control Plane

All Pods have a VPC IP address

It doesn't matter if we're running as a Pod or on a full EC2 instance

 v0, Controller registered with Envoy Discovery on Pod status

Envoy Mesh couldn't tell if a service was on Kubernetes or not!

 v1, EnvoyManager uses Informers to determine Pod status and bridge clusters together

Lyft Envoy Mesh Sidecar Startup

- Envoy Manager (EM) runs in Kubernetes
- EM provides xDS to Pods on start
- Headless Service per cluster for EM
- Envoy sidecar connects to EM on well-known DNS name

gRPC load balancing over IP set returned

Lyft Service Migration Takeaways

- VPC IPs have enabled an incremental migration
 - Hybrid deployments
 - Legacy services on ASGs scale down while Kubernetes services scale up on HPAs
- Aggressively avoid network complexity (KISS)
 - Simplify your network topology
 - Use Envoy
 - Avoid NAT
 - Avoid kube-proxy
 - Avoid Kubernetes Services

- P95/P99 latency remains constant for migrated services
 - IPvlan lives up to the hype
- VPC continues to "just-work"
 - Network performance and throughput equivalent to running in legacy stack on EC2 Instances without containers
 - Easy to debug
- Per-AZ redundant clusters
 - Maps to existing blast radius
 - Lyft doesn't fall over if we lose a core cluster

Lyft CNI Future Work

 Not looking to add significant features (complexity)

Same code has been running for 2 years with minimal changes

- IPv6
 Not used internally yet, contributions welcome
- NetworkPolicy via CNI chaining
 Should not be part of the core stack
 Chaining with Cilium looks promising
- tc for restricting bandwidth based on CPU count
 Not yet a production issue since driving a 25Gb NIC is difficult
 Run out of CPU/memory before that happens

Lyft CNI Code Shoutouts (Thanks!)

- Lyft
 - @theatrus
 - @mcutalo88
 - @bpownow
 - @mjchoi
- Datadog
 - @lbernail

- @polarbizzle
- @ungureanuvladvictor
- @skolomiiets
- @dbyron0
- @SerialVelocity

Lyft Happy Hour Tonight!

- Date: Tuesday, Nov 19
- Time: 7pm-10pm
- Where: Thorn Brewing Co. Barrio Logan
 1745 National Ave
- Tacos, Beer, and Wine
- RSVP @
 https://lyft-kubecon.splashthat.com/
 (or register at the door)

