
Danny Thomson & Jesse Suen, Intuit

Leveling Up Your CD: Unlocking Progressive
Delivery on Kubernetes

Who are we

Founded

5,000

Developers

50M

Customers

1993

IPO

$6.8B
FY19

Revenue

20

Locations

1983

Some Intuit Statistics

● 4 business units
● 30 business segments
● 1,200+ developers using

Kubernetes

● 160+ clusters (Intuit managed)
● 6,600 nodes
● 5,400 namespaces
● 62,000 pods
● 1,300 deploys a day

Continuous Delivery

● Shortens the time it takes to deliver software to users

Develop DeployBuild Test

● Delivers faster, but not necessarily safer
● Most problems and outages occur after a change

Progressive Delivery

“Progressive delivery is continuous delivery with fine-grained control
over the blast radius.”

— James Governor, RedMonk

Progressive Delivery

Develop Build Test

Success?
NO YES

Analyze

Progress
(increase subset)

Deploy
(subset)

Rollback

Progressive Delivery

Problem

● Rolling Update provides few controls over speed
● Container readiness probes are not enough

○ Unsuitable for deeper or temporary checks
○ Unable to use external metrics

● Able to halt the progression, but not reverse

How do I…
● automatically rollback an update due to failed metrics
● fine-tune my success and failure criteria
● insert a manual judgement step
● use my own business metrics for analysis
● experiment with multiple versions of my service

(e.g. baseline vs. canary, A/B testing)
● and others...

Use Cases

Requirements

Declarative04 ● GitOps focused

Flexible03 ● Control over the rollout plan
● What metrics to analyze and from where

Standardized02 ● Use industry standard tooling
(Prometheus, Kayenta, Wavefront, etc…)

Robust ● Does not rely on scripting/pipelines01

Argo Rollouts

Phase 1: Deployment++
● Drop-in replacement for a Deployment
● Additional deployment strategies: blue-green and canary
● Declarative and GitOps friendly

Rollout
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: canary-demo
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: app
 image: argoproj/rollouts-demo:blue
 ...
 strategy:
 canary:
 steps:
 - setWeight: 40
 - pause: {duration: 3600}
 - setWeight: 60
 - pause: {duration: 10}
 - setWeight: 80
 - pause: {duration: 10}

● Manages creation, scaling, and deletions
of ReplicaSets

Rollout
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: canary-demo
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: app
 image: argoproj/rollouts-demo:blue
 ...
 strategy:
 canary:
 steps:
 - setWeight: 40
 - pause: {duration: 3600}
 - setWeight: 60
 - pause: {duration: 10}
 - setWeight: 80
 - pause: {duration: 10}

● Spec is mostly identical to Deployment

Rollout
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: canary-demo
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: app
 image: argoproj/rollouts-demo:blue
 ...
 strategy:
 canary:
 steps:
 - setWeight: 40
 - pause: {duration: 3600}
 - setWeight: 60
 - pause: {duration: 10}
 - setWeight: 80
 - pause: {duration: 10}

● New blue-green and canary strategies
provides control over how to update the
stable version to new version

Argo Rollouts

Phase 1: Deployment++
● Drop-in replacement for a Deployment
● Additional deployment strategies: blue-green and canary
● Declarative and GitOps friendly

Phase 2: Progressive Delivery
● Analysis
● Experimentation

● Brings observability to the delivery process
● Defines how to perform a canary analysis:

○ What metrics to measure and when
○ What values are considered successful, failed, inconclusive

● Automates promotion & rollback

Analysis CRDs

Rollout Integration
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: canary-demo
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: app
 image: argoproj/rollouts-demo:blue
 ...
 strategy:
 canary:
 analysis:
 templateName: success-rate
 steps:
 - setWeight: 40
 - pause: {duration: 3600}
 - setWeight: 60
 - pause: {duration: 10}
 - setWeight: 80
 - pause: {duration: 10}

Canary Analysis
● Analysis is performed in the background,

while the rollout is progressing through
its steps

● Started at the beginning of a rollout, and
stopped when the rollout is complete

Rollout Integration
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: canary-demo
spec:
 replicas: 5
 template:
 spec:
 containers:
 - name: app
 image: argoproj/rollouts-demo:blue
 ...
 strategy:
 canary:
 steps:
 - setWeight: 20
 - analysis:
 templateName: http-benchmark
 - setWeight: 40

Inline Analysis
● Analysis can also be performed “inline,”

as a blocking step in the rollout
● Suitable for more heavyweight analysis

where recurrence may not be desired
(e.g. benchmarking, load/stress testing,
integration tests)

DEMO

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: success-rate
spec:
 args:
 - name: ingress
 metrics:
 - name: success-rate
 interval: 5m
 count: 5
 successCondition: result[0] > 0.90
 failureLimit: 2
 provider:
 prometheus:
 address: http://prometheus-svc.prometheus-ns:9090
 query: >-
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"status!~"[4-5].*"}[5m]))
 /
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"}[5m]))

AnalysisTemplate

Defines one or more key metrics to
monitor during a rollout

Support for many providers:
● Prometheus
● Job
● Kayenta
● Web (coming)
● Wavefront (coming)
● and others..

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: success-rate
spec:
 args:
 - name: ingress
 metrics:
 - name: success-rate
 interval: 5m
 count: 5
 successCondition: result[0] > 0.90
 failureLimit: 2
 provider:
 prometheus:
 address: http://prometheus-svc.prometheus-ns:9090
 query: >-
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"status!~"[4-5].*"}[5m]))
 /
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"}[5m]))

AnalysisTemplate - Prometheus Provider

Prometheus Provider
● Address - prometheus server
● Query - PromQL query

Example (HTTP success rate):

of non-4xx/5xx HTTP requests
———————————————

of total HTTP requests

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: success-rate
spec:
 args:
 - name: ingress
 metrics:
 - name: success-rate
 interval: 5m
 count: 5
 successCondition: result[0] > 0.90
 failureLimit: 2
 provider:
 prometheus:
 address: http://prometheus-svc.prometheus-ns:9090
 query: >-
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"status!~"[4-5].*"}[5m]))
 /
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"}[5m]))

AnalysisTemplate - Success Condition

● An expression which interprets
the result of a measurement

● Results can return as:
○ scalars
○ vectors
○ structured objects

● Built-in functions like any(),
all(), filter(), map()

● Results can also be
Inconclusive to allow for
manual judgements

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: success-rate
spec:
 args:
 - name: ingress
 metrics:
 - name: success-rate
 interval: 5m
 count: 5
 successCondition: result[0] > 0.90
 failureLimit: 2
 provider:
 prometheus:
 address: http://prometheus-svc.prometheus-ns:9090
 query: >-
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"status!~"[4-5].*"}[5m]))
 /
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"}[5m]))

AnalysisTemplate - Interval & Count

● Interval
○ How frequent to query the

provider
● Count

○ Number of times to take a
measurement

○ Runs indefinitely if omitted
(or until failure)

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: success-rate
spec:
 args:
 - name: ingress
 metrics:
 - name: success-rate
 interval: 5m
 count: 5
 successCondition: result[0] > 0.90
 failureLimit: 2
 provider:
 prometheus:
 address: http://prometheus-svc.prometheus-ns:9090
 query: >-
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"status!~"[4-5].*"}[5m]))
 /
 sum(rate(nginx_ingress_controller_requests
 {ingress="{{args.ingress}}"}[5m]))

AnalysisTemplate - Arguments

● Arguments make Analysis
Templates parameterizable

● Enables templates to be
reusable/standardized across
organizations and communities

● Makes templates building
blocks for higher levels
resources

● An ephemeral run of one or more versions of a service
● Coupled with analysis
● Can be started as a Rollout step

Use Cases:
● A/B testing
● Baseline vs. Canary Analysis (Kayenta)
● ML model testing

Experiment CRD

Experiment CRD
apiVersion: argoproj.io/v1alpha1
kind: Experiment
metadata:
 name: demo-ab-test
spec:
 duration: 15m
 templates:
 - name: purple
 template:
 spec:
 containers:
 - name: rollouts-demo
 image: argoproj/rollouts-demo:purple
 ...
 - name: orange
 template:
 spec:
 containers:
 - name: rollouts-demo
 image: argoproj/rollouts-demo:orange
 ...
 analyses:
 - name: purple
 templateName: http-benchmark
 args: [{name: host, value: purple}]
 - name: orange
 templateName: http-benchmark
 args: [{name: host, value: orange}]

Experiment CRD
apiVersion: argoproj.io/v1alpha1
kind: Experiment
metadata:
 name: demo-ab-test
spec:
 duration: 15m
 templates:
 - name: purple
 template:
 spec:
 containers:
 - name: rollouts-demo
 image: argoproj/rollouts-demo:purple
 ...
 - name: orange
 template:
 spec:
 containers:
 - name: rollouts-demo
 image: argoproj/rollouts-demo:orange
 ...
 analyses:
 - name: purple
 templateName: http-benchmark
 args: [{name: host, value: purple}]
 - name: orange
 templateName: http-benchmark
 args: [{name: host, value: orange}]

● Starts multiple versions of a
service at the same time

● Runs for a specified duration
(or indefinitely until failure)

Experiment CRD
apiVersion: argoproj.io/v1alpha1
kind: Experiment
metadata:
 name: demo-ab-test
spec:
 duration: 15m
 templates:
 - name: purple
 template:
 spec:
 containers:
 - name: rollouts-demo
 image: argoproj/rollouts-demo:purple
 ...
 - name: orange
 template:
 spec:
 containers:
 - name: rollouts-demo
 image: argoproj/rollouts-demo:orange
 ...
 analyses:
 - name: purple
 templateName: http-benchmark
 args: [{name: host, value: purple}]
 - name: orange
 templateName: http-benchmark
 args: [{name: host, value: orange}]

● Coordinates analysis with the
templates’ readiness

● Can automatically shut down
experiments which are not
meeting metric requirements

AnalysisTemplate - Job Provider

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: http-benchmark
spec:
 args:
 - name: host
 metrics:
 - name: http-benchmark
 provider:
 job:
 spec:
 template:
 spec:
 containers:
 - name: load-tester
 image: argoproj/load-tester:latest
 command: [sh, -xec]
 args:
 - |
 wrk -t1 -c1 -d10s -s report.lua \
 http://{{args.host}}/color
 jq -e '.errors_ratio <= 0.05' report.json

Job based metric
● Exit code determines success or

failure

Example:
● Runs a http benchmark against a

supplied host
● Verify error rate is <= 5%

DEMO

Summary
● Analysis and Experiments are building blocks
● Customize to your progressive delivery plan
● Progressive Delivery is multi-faceted
● Just the beginning!

What’s Next
● Service Mesh & Ingress Controller integration

○ Finer grained traffic shaping
○ Advanced user segmentation

● Additional metric providers
○ Contributions welcome!

Links
● Argo Rollouts: https://github.com/argoproj/argo-rollouts
● Demo: https://github.com/argoproj/rollouts-demo
● Come find us at the Intuit booth S47

http://bit.ly/gitops-and-k8s50% Code:mlyuen

https://github.com/argoproj/argo-rollouts
https://github.com/argoproj/rollouts-demo
http://bit.ly/gitops-and-k8s

