

NATS Project Update
Derek Collison

NATS is a simple,

production proven,

cloud-native

messaging system.

What is NATS?

✓ Scalable Services and Streams

✓ At-Most-Once and At-Least-Once QoS

✓ Routing on Subjects/Topics, not IP or Hostnames

✓ Proven High-Performance Publish/Subscribe Router

✓ Simple, Secure, Performant and Resilient

✓ Built from the ground up to be Cloud-Native

✓ Support for over 30 different client languages

✓ Production-Proven for over 9 Yrs

Sample of NATS Clients

Some NATS Users

Use Cases

● Cloud Messaging

✓ Services (microservices)

✓ Event/Data Streaming (observability, analytics)

✓ Command and Control

● IoT and Edge

✓ Telemetry / Sensor Data / Command and Control

● Augmenting or Replacing Legacy Messaging

User Testimonials

With Choria.io, a user can be up and running with a scalable, clustered, secure
orchestration system within 30 minutes. Out of the box it’s known to support
50,000 nodes on a single compute node while being secure by default, easy to
maintain and production ready, all powered by NATS.

User Testimonials

Netlify, the leading platform for deploying high performance websites and
applications, utilizes NATS as the ultra-fast data plane for their services spanning
several cloud providers and supporting over 500,000 developers and businesses.

User Testimonials

Mastercard is leveraging NATS to transition from a legacy system to a next
generation cloud based infrastructure and has been providing valuable input for
new NATS features related to security, tracing, bridging, and configuration.

User Testimonials

StorageOS leverages NATS as a reliable control plane to transmit critical system
level events like volume creation and deletion between nodes in their persistent
storage for containers.

User Testimonials

Tinder migrated to NATS from a poll based system to allow push notifications to
their users, increasing scalability, and reducing mobile network bandwidth usage.

User Testimonials

Platform9 created Fission.io, a framework for “Serverless” Functions or
Functions-as-a-Service on Kubernetes which uses NATS for event sourcing.
NATS was chosen over other messaging projects for it's reliability and ease of use.

User Testimonials

Qlik's Qlik Sense is a Cloud Native data analytics platform built on Kubernetes that
provides a rich analytics user experience to thousands of users. Qlik Sense uses
NATS to broadcast messages to facilitate data synchronization, workload queues,
and cache invalidation as well as help provide monitoring and auditing of the
system as a whole, as well as handling our custom authentication requirements.

NATS Ecosystem

NATS Integrations

✓ Simple curl command to install and deploy to Kubernetes

✓ Prometheus Exporters, Fluentd Plugin and OpenTracing/Jaeger support

✓ Dapr.io Component Integration

✓ Spring Boot Starter

✓ NATS Cloud Stream Binder for Spring

✓ NATS / Kafka Bridge

✓ NATS / MQSeries Bridge

✓ Go-Cloud and Go-Micro pub/sub integration

NATS Monitoring

Global Dashboard

SuperCluster Metrics

Service Latency - Global View

NATS Getting Started

Basic Messaging Patterns

Services - Request/Reply

✓ Scale Up and Down

✓ Location Transparency

✓ Observability

Streams - Events and Data

✓ Scalable N:M communications

✓ Realtime and Persisted

✓ Playback by time, sequence, all or only last received

Accessing a NATS System

✓ Free Community Servers

• demo.nats.io (both open and secure versions)

✓ Kubernetes

• curl https://nats-io.github.io/k8s/setup.sh | sh

✓ Docker

• docker run -p 4222:4222 -ti nats:latest

✓ Additional Information

• https://docs.nats.io/nats-server/installation

Building Services with NATS

HTTP vs NATS (Requestor)

resp, err := http.Get("http://example.com/")

if err != nil {

 // handle error

}

defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

// decode body

HTTP vs NATS (Requestor)

nc, err := nats.Connect("demo.nats.io")

if err != nil {

 // handle err

}

resp, err := nc.Request("example.com", nil, 2*time.Second)

// decode resp.Data

HTTP vs NATS (Service)

http.HandleFunc("/bar", func(w http.ResponseWriter, r *http.Request){

 fmt.Fprintf(w, "Hello World")

})

log.Fatal(http.ListenAndServe(":8080", nil))

HTTP vs NATS (Service)

nc, err := nats.Connect("demo.nats.io")

if err != nil {

 // handle err

}

sub, err := nc.QueueSubscribe("bar", "v0.1", func(m *nats.Msg) {

 m.Respond([]byte("Hello World"))

})

NATS Service

✓ Deploy to any cloud, any geo, any deployment framework

✓ On-premise, Cloud, Edge or IoT

✓ No load balancers required

✓ No DNS updates to launch service

✓ No config changes to scale up or down

✓ Transparent service latency tracking (3 points of reference)

NATS History

History of NATS

NATS started as a project to power CloudFoundry

✓ Command and Control

✓ Querying

✓ Telemetry and Events

✓ Location Transparency

✓ Addressing and Discovery

✓ Distributed Scheduler

✓ Highly Resilient and Self Healing

NATS “then”

Built for me to serve
CloudFoundry and BOSH

control planes and telemetry system.

NATS “now”

Be the enabling technology to securely
connect ALL the world’s digital systems,

services and devices.

Connect Everything

✓ Shared utility of any size

✓ Decentralized and Federated

• Mix a shared utility with your own servers and security

✓ Secure by default, no passwords or keys, powerful authorization

✓ On-Premise, Multi-Cloud, Multi-Deployment, the Edge, and IoT

✓ Communicate, Publish, Consume, and Save and Restore State

✓ Healthy and thriving Ecosystem of Services and Streams

NATS Community

Contribution and Project Velocity

✓ Over 1,000 contributors, over 100 with more than 10 commits

✓ 33 Client Languages, most from outside contributors

✓ 15,000+ GitHub stars across repos

✓ 75 Public Repos

✓ 100M NATS Server and Streaming Server Docker Downloads

✓ ~1,600 Slack Members and accelerating

✓ 20+ releases of the NATS server since June 2014, ~= 5/yr

https://nats.devstats.cncf.io/d/9/developers-summary

https://nats.devstats.cncf.io/d/9/developers-summary

Last 2.5 Years

✓ Designed PKI/JWT security for AuthZ and AuthN (w/ instant revocation)

• NO private keys transmitted or store on any NATS server

✓ Move to a secure multi-tenant distributed design, “containers for messaging”

✓ Additional Network Topologies

• Gateways for global superclusters

• Leafnodes to extend a NATS system with your own servers and auth

✓ Dynamic Response Authorization

✓ Transparent Service Latency Tracking

✓ All NEW Docs!

JetStream

✓ Next generation persistent messaging

✓ Years in the design and implementation

✓ Built into every NATS server, works with all NATS clients

✓ Supports Streams, Message-Queues and Work-Queues

✓ Push and Pull modes for Consumers

✓ File and Memory backing stores

✓ Scales horizontally, no additional components required

✓ NATS 2.0 Native, multi-tenant and secure by default

What’s Next?

✓ IoT and Edge

✓ Native MQTT support

✓ Websocket support for mobile and web

✓ Webassembly support

• Secure ingress and egress filtering and customization

• JetStream filters and processing

✓ Additional Stateful services, K/V, etc.

Timeline

2010

NATS first commit

Single Ruby Server and
Client. No clustering or
auth past single password
for the whole system.

2016

NATS Streaming

Authorization enhancements.
NATS.io site launched.
Ecosystem start. More clients
added.

2020

IoT, Edge & Mobile

MQTT support, Signed
Webassembly support,
Websockets support

2012

Go version released

Clustering. Performance
increase from 150k
msgs/sec to 6M msgs/sec.

2019

NATS 2.0 / JetStream

CNCF - 2018. Multi-Tenancy,
SuperClusters, Leafnodes,
PKI/JWT based authN and
authZ.

Want to learn more?

✓ 90 Minute Deep Dive Session on Thursday, 10:55am Room 6E

✓ Come by the Project Booth

✓ The nats.io website

✓ Docs! - docs.nats.io

✓ Slack Channel - slack.nats.io

✓ Email - info@nats.io

Come join us!
Let’s Connect Everything

