


Jordan Liggitt and Davanum Srinivas

Intro to Kubernetes 
SIG-Architecture Subprojects



Who Are We?

Jordan Liggitt
Staff Software Engineer, Google

@liggitt

Davanum Srinivas
Staff Engineer, VMware

@dims



● Distribution is better than centralization
● Community over product or company
● Automation over process
● Inclusive is better than exclusive

○ Your feedback is solicited

● Evolution is better than stagnation

Kubernetes Community Values

https://git.k8s.io/community/values.md

https://git.k8s.io/community/values.md


Kubernetes Project Overview



SIG Architecture Scope

The Architecture SIG maintains and evolves the design principles 
of Kubernetes, and provides a consistent body of expertise 
necessary to ensure architectural consistency over time.

● Conformance test definitions
● API conventions
● Architectural renderings
● Design principles
● Deprecation policy



● Conformance test review and management
● API review process

○ go.k8s.io/api-review 

● Design documentation management
○ git.k8s.io/enhancements/keps 

● Deprecation policy management
○ k8s.io/docs/reference/using-api/deprecation-policy
○ k8s.io/docs/setup/release/version-skew-policy 

Cross-cutting Processes

https://go.k8s.io/api-review
https://git.k8s.io/enhancements/keps
https://k8s.io/docs/reference/using-api/deprecation-policy
https://k8s.io/docs/setup/release/version-skew-policy


● Ambiguous behavioral questions
○ Inconsistencies in behavior across resources

● Unanswered questions
● Anything where TL/Chairs/Owners conflict
● Start a mailing list thread - come with KEPs and details!

○ git.k8s.io/community/sig-architecture#contact 

What other kinds of issues?

https://git.k8s.io/community/sig-architecture#contact


● Architecture and API 
○ Document design principles
○ Document and evolve system architecture
○ Reviewing, Curating extension patterns

● Code Organization
○ Repository structure, branching, vendoring

● Conformance Definition
○ Review, approve changes to conformance test suite

● Production Readiness Reviews

Sub Projects



● Review process
○ go.k8s.io/api-review

● Project board
○ github.com/orgs/kubernetes/projects/13 

● API Conventions, Guidelines
○ git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md 
○ git.k8s.io/community/contributors/devel/sig-architecture/api_changes.md 
○ Very relevant for in-tree API design / additions / changes
○ Some guidelines also apply to CRD development

API Review

https://go.k8s.io/api-review
https://github.com/orgs/kubernetes/projects/13
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md
https://git.k8s.io/community/contributors/devel/sig-architecture/api_changes.md


● bit.ly/sig-architecture-code-org
● github.com/orgs/kubernetes/projects/27
● Dependency management
● Subrepo structure

Code Organization

Source: http://issue.k8s.io/76395

http://bit.ly/sig-architecture-code-org
https://github.com/orgs/kubernetes/projects/27
http://issue.k8s.io/76395


Conformance Test & Promotion
● Ensuring consistent support and behavior across distributions

○ bit.ly/sig-architecture-conformance
○ github.com/orgs/kubernetes/projects/9
○ git.k8s.io/community/contributors/devel/sig-architecture/conformance-tests.md

● Improving test health and feedback
○ Adding presubmit conformance test coverage

github.com/kubernetes/enhancements/pull/1306
○ Conformance tests only use GA features/APIs

git.k8s.io/enhancements/keps/sig-architecture/20191023-conformance-without-beta.md

http://bit.ly/sig-architecture-conformance
https://github.com/orgs/kubernetes/projects/9
https://git.k8s.io/community/contributors/devel/sig-architecture/conformance-tests.md
https://github.com/kubernetes/enhancements/pull/1306
https://git.k8s.io/enhancements/keps/sig-architecture/20191023-conformance-without-beta.md


Conformance Test & Promotion
● Visualizing current coverage

○ apisnoop.cncf.io 
○ Filter by stable/beta/alpha status
○ Filter by API group
○ Filter by test

https://apisnoop.cncf.io/


Production Readiness Reviews
● bit.ly/sig-architecture-prod-readiness
● Asking the question "how will people run this in production?"
● Feedback loop from cluster operators, features that went well / didn't go well
● Developing questions/processes to improve production readiness
● Examples: monitoring, admin documentation, rollout, scale, security

http://bit.ly/sig-architecture-prod-readiness


Where are we going?

● Focus on extensions
○ Extension mechanisms GA in v1.16
○ Let the ecosystem grow and distill the best patterns
○ Fewer changes to core
○ Prove out new ideas as CRD APIs

● Build out conformance
● Cleanup + Reliability (.0 releases, production readiness)
● Organization Scaling
● KEPs KEPs KEPs



● Attend the main and subproject meetings
● Follow along on project boards, mailing lists, and slack:

git.k8s.io/community/sig-architecture#contact

● Find something of interest you can help with
● Speak up - offer your thoughts and ideas, 

ask questions for background/history, etc.
● Help with issue triage, PR reviews, docs

How you can participate?

https://git.k8s.io/community/sig-architecture#contact


Thank You!
Q/A 


