

@amitnist
@ivishnuvardhan

Introduction to

Visit us at Booth SE23

Agenda

● Overview

● CAS

● Architecture & Design details

● Use cases

● Performance

● Future

● Conclusion

Overview

Overview

● OpenEBS was created in late 2016 and

was initially sponsored by MayaData.

● CNCF Sandbox project.

● Users started running OpenEBS in

production, fall of 2017.

● Recent uptick in usage - lots of

feedback on community & top tech

companies contributing and using.

● Growing usage ~30-40% month on month

in 2019

• Open Source from Start!

• Apache 2.0 Licensed

• 350+ contributors from different

companies

• 1700+ Slack Members

• 600+ Forks

• 6000+ stars across main repositories

• MayaData is so far the biggest

contributor to OpenEBS. It is a data

agility company, that turns

Kubernetes itself into your data

plane.

OpenEBS Design Manifesto

• Easy to set up. Low entry barrier. Developer and operator friendly.

Offer both freedom and flexibility to control.

• Optimize data operations for running Stateful workloads seamlessly on

any Kubernetes platform.

• Built using containers and microservices architecture patterns.

Orchestrated by Kubernetes and its ecosystem. Containerized Storage

for Containers!

• Stable, Secure and Scalable - Fault tolerant, horizontally scalable

and secure by default

• Seamless integration into any private and public cloud environments.

Vendor independent.

• Non-disruptive software upgrades all the way to storage.

CAS

Container Attached Storage - CAS

K8s Node

App

PVC

PV PV

App

PVC

PV

App

PVC

Vol Vol Vol

BlockDev (Raw/w FS)

Dev DevDev

○ Storage controllers run as microservices
(containers).

○ Avoids kernel dependencies.
○ These storage containers are orchestrated by

Kubernetes and its extensions (like any other
workloads).
● Installation and Upgrades
● Scheduling
● Monitoring, Debuggability

○ Storage containers mainly deal with:
● Disk/Storage Management
● Data - High Availability and
● Data - Protection

○ CAS is Container Native

Persistent Volume Categories

App

K8s Node

PV PV PV

App App

Storage Server
Vol Vol Vol

NAS/EBS
K8s Node

App

PV PV

App

PV

App

DAS/LocalPV

Indicates functionality like replication, snapshots, encryption, compression, etc.

Represent stateful Pods like Databases, etc.

K8s Node

App

PV PV

App

PV

App

CAS
Pod(s)

CAS
Pod(s)

CAS
Pod(s)

CAS/OpenEBS

Simple, familiar

App granularity

K8S native

100% user space

No HA

No Snapshots

CAS Examples

Examples of Open Source (CNCF) CAS Solutions

○ OpenEBS Storage Engines (cStor, Jiva,
MayaStor)

○ Rancher Longhorn

Examples of CAS Helpers

○ Rook (Ceph or OpenEBS can be plugged in)

“OpenEBS is a CAS solution, that provides storage as a service to
stateful workloads. OpenEBS hooks-into and extends the capabilities of
Kubernetes to orchestrate storage services (workloads)”

K8s Node

App

PVC

PV PV

App

PVC

PV

App

PVC

Vol Vol Vol

BlockDev (Raw/w FS)

Dev DevDev

Architecture & Design details

Architecture Overview

Cluster
Components

OpenEBS Operator

NDM OperatorStorage Manager(s)
(CSI Controller)

NDMStorage (CSI)
Agent

Others (Velero, Director..)

Node
Components

Node n)Node 1)

NDMStorage (CSI)
Agent

Others (Velero, Director..)

Others(Velero, Director,
…)

Data Engines Data Engines

NDM Operator

kube-apiserver
kube-scheduler . . .

Device CR

etcdkubectl

Monitoring, Alerting,
Logging, Tracking, . . .

(Example: Prometheus
Fluentd, Jaegar . . .)

Metrics Exporter

Node (1 . . . n)

Kubernetes Master Components Infra Management Components

Cluster Level Components

Disk CR (K8s)

Device Claim
CR

Enclosure / Disk
Management
(SeaChest)

Node Device
Manager
(DaemonSet)

ndmctl

Operator

Node Device Manager

NDM - Discovery

Block Device

Block Device contd...

Kubernetes Cluster
node2node1

Pod

Stateful
Workload
(DB, etc)

Setup OpenEBS

PV

DevOps
admin

(1) node-disk-manager,
 provisioner,
(2) StorageClass

OS

Developer

Using OpenEBS

(3) StatefulSet with
PVC
(4) PV OS

node3

OS

Disk Disk Disk Disk Disk Disk

Pod

Stateful
Workload
(DB, etc)

PV

PVC PVC

OpenEBS Local PV Provisioner

Dynamic Local Device

Block Device Claim

Dynamic HostPath

OpenEBS
Operator

kube-apiserver
kube-scheduler . . . etcd

kubectl

Monitoring, Alerting,
Logging, Tracking, . . .

(Example: Prometheus
Fluentd, Jaegar . . .)

OpenEBS
Storage
Agent (CSI
Node Agent)

Node Components (1 . . . n)

Kubernetes Master Components Infra Management Components

Cluster Level OpenEBS Components

OpenEBS
CR

CAS Metrics Exporter

Provisioner(s)
CSI Controller

SC and PVC

OpenEBS API
Server (
Storage
Operators)

NDM, Velero (Velero), Director

CAS Volume Components (1 . . . m)

CAS Management

CAS Data Engine
CAS YAMLs

NDM,
Velero,

Director

velero

mayactl

ndmctl

OpenEBS Control Plane (Maya)

Monitoring, Alerting, Logging, Tracking, . . .
(Example: Prometheus
Fluentd, Jaegar . . .)

cStor
Volume
Target

kubectl

CSI Agent (iSCSI Initiator)

Stateless Target and its Service

Infra Management Components

Application Node

Metrics
Exporter

Metrics
Exporter

PV and PVC

Storage Nodes (1 . . . m)

cStor Pool

Stateful Application Pod

ServiceKubelet

cStor
Volume
Mgmt

cStor Pool
Mgmt

Node
Disk

cStor Data Engine

Kubernetes Cluster
node2node1

Pod

Stateful
Workload
(DB, etc)

cStor
(iSCSI)
Target

Rep-1 Rep-2

Setup OpenEBS

PV

(1) node-disk-manager,
provisioner, cstor
operator

(2) SPC=>StoragePool(s)

(3) StorageClass

OS

Developer

Using OpenEBS

(4) Pod with OpenEBS
PVC
(5) PV

cStorPool

OS

cStorPool

node3

Rep-3

OS

cStorPool

Disk Disk Disk Disk Disk Disk

PVC

Cluster
admin

cStor Data Engine

Use cases

Adopters include

https://github.com/openebs/openebs/blob/master/ADOPTERS.md

Workloads

and many more

UC: CI/CD #devops

● Pipelines spin up frequent and short lived workloads
● Too many workloads running with minimal IO needs like

gitlab executors
○ overall cluster can meet workload resource

requirements, but, not a single or few nodes
● Storage is available on few nodes
● Storage aware scheduling of workloads is problem

Problem
Statement

● Discovers storage devices
● Containerized iSCSI target per volume as per CAS architecture
● Scheduling issues due to too many workloads will not happen as

workloads can run anywhere

UC: MLOps

● Workloads like data pipelines that need instant
snapshots, clones for data sharing across teams

● Different steps of data pipelines running in different
cluster

● Replicating data pipelines to different cluster
● Data protection during OS / application upgrades

● Copy-On-Write snapshots, clones
● velero-plugin to backup/restore data to another cluster

UC: Cloud Native Stateful Applications

● Applications take care of replication, high
availability of data

● Workloads demanding low latency, high performance
storage

● Sharing of underlying storage with multiple
applications in K8s native way

● Hyperconverged K8s cluster with directly attached
storage

● Discovers storage devices
● Provides dynamic provisioning of

○ local disks and their partitions
○ directories as local PV on another local PV
○ ZVOLs from underlying ZFS pools in the cluster nodes

UC: IoT/Edge computing, Monitoring apps

● Workloads run on Edge devices with
○ minimal hardware resources
○ minimal storage capacity

● Storage for containerized apps on Edge devices to store filtered
offline data

● Monitoring, alerting and metrics gathering applications with
smaller resource footprint

● Replicable setups to run stateful workloads at scale with ease

● ARM support
● OpenEBS related pods can be configured with resource limits
● These limits impacts IOPS and latencies
● Within configured limits, it provides storage to applications by

giving enough room for workloads to perform

UC: Cost savings #noCloudLockin

● Flexible in selecting or changing cloud vendor
● In the cloud,

○ difficult to obtain new nodes, persistent disks
○ attach / detach of remote disks takes time
○ High cost ratio between ephemeral to remote disks, and,

preemptible to regular nodes
○ Increase in a node cost many folds as HW specs increases

● Faulty domains with cloud or on-prem clusters, with respect to,
○ Disks going bad or unreachable
○ Nodes can be down due to (other than HW failures)

■ vMotion kind of cases in vSphere
■ node upgrades

○ Zones becoming unreachable

UC: Cost savings, Easy operations (contd..)

● KubeMove, Velero plugin support for data migration
● Thin provisioning of storage (add disks on demand)
● Software RAID is available for data protection against disks turning

bad
● Synchronous replication across nodes and zones to guarantee data high

availability to workloads even in case of node/zone unreachability
○ Allows workloads to run anywhere leading to efficient utilization

of HW resources
● Works with ephemeral disks that takes care of reconstructing entire

data into new disks automatically
● Works with preemptible nodes as well on attaching remote disks to new

preemptible nodes
● No kernel dependencies as storage engines runs in user space
● Same storage experience on different IaaS like openstack, vsphere and

K8s deployments with bosh

Performance

● Multiple provisioners can run to scale volume provisioning requests using

leader-election

● Workloads can achieve near disk performance using local PV dynamic provisioner

of DAS architecture

● CAS architecture provisions volumes and allows to scale workload count that

require lesser IOPS

● Jiva/cStor - being a replicated block storage, the performance is as good as

Ceph and has the benefits of being more resilient to multiple fault domains,

easy-to-setup/maintain.

● MayaStor - low latency, high throughput engine based on NVMe-oF technology

● High performing storage engine with synchronous replication, snapshots

● Cluster Autoscale aware storage

● Application consistent snapshots

● Workload migration from one cluster to another along with data

● Disk unique identification and unique access

● More events, alerts, metrics

● Flexibility

● Easy-to-use

● Persona oriented

● Cloud native storage in K8s way

● Storage for workloads in Hyper Converged and on-prem clusters

● High availability of data

● Cost aware storage provisioning layer

● Storage engine as per application storage demands

● Resources limits for storage pods

● Synchronous replication and rebuilding

● Snapshots / Clones

● Backup / Restore

● https://github.com/openebs/openebs/blob/master/ADOPTERS.md

● CNCF Landscape storage whitepaper

● PC for devOps image

● PC for MLOps image

https://github.com/openebs/openebs/blob/master/ADOPTERS.md
https://docs.google.com/document/d/1Cek8jJ2SPt4xx7Tnx7ih_m4DxzSimj_w26qYHnfrrRQ/edit#heading=h.gk93vknxkiek
https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjruOX_iPPlAhVHqZ4KHQrNBYIQjRx6BAgBEAQ&url=https%3A%2F%2Fmlops.org%2F&psig=AOvVaw2STTkZmrWVTymWM1yTdG1n&ust=1574142784716407

Thank You

Visit us at Booth SE23

NDM Config - Sample

Block Device

Block Device contd...

cStor
Volume Target
Pod

cStor Data Engine - High Availability

Application Node Storage Nodes (1 . . . m)

cStor Pool Pod

Stateful
Application

Pod

Node
Disk

cStor Pool Pod
Node
Disk

cStor Pool Pod
Node
Disk

cStor Volume Target
does Synchronous
Replication, i.e writes
copies of the data to
each of the available
Replica Pools.

cStor Volume Target attaches an unique
sequence number to each of the block - before
sending the copies to Replica Pools.

